26 research outputs found

    Selective antiproliferative effect of C-2 halogenated 13α-estrones on cells expressing Organic anion-transporting polypeptide 2B1 (OATP2B1)

    Get PDF
    Organic anion-transporting polypeptide 2B1 (OATP2B1) is a multispecific transporter mediating the cellular uptake of steroids and numerous drugs. OATP2B1 is abundantly expressed in the intestine and is also present in various tumors. Increased steroid hormone uptake by OATP2B1 has been suggested to promote progression of hormone dependent tumors. 13 alpha-estrones are effective inhibitors of endogenous estrogen formation and are potential candidates to inhibit proliferation of hormone dependent cancers. Recently, we have identified a variety of 13 alpha/beta-estrone-based inhibitors of OATP2B1. However, the nature of this interaction, whether these inhibitors are potential transported substrates of OATP2B1 and hence may be enriched in OATP2B1overexpressing cells, has not yet been investigated. In the current study we explored the antiproliferative effect of the most effective OATP2B1 inhibitor 13 alpha/beta-estrones in control and OATP2B1-overexpressing A431 carcinoma cells. We found an increased antiproliferative effect of 3-O-benzyl 13 alpha/beta-estrones in both mock transfected and OATP2B1-overexpressing cells. However, C-2 halogenated 13 alpha-estrones had a selective OATP2B1-mediated cell growth inhibitory effect. In order to demonstrate that increased sensitization can be attributed to OATP2B1-mediated cellular uptake, tritium labeled 2-bromo-13 alpha-estrone was synthesized for direct transport measurements. These experiments revealed increased accumulation of [H-3]2-bromo-13 alpha-estrone due to OATP2B1 function. Our results indicate that C-2 halogenated 13 alpha-estrones are good candidates in the design of anti-cancer drugs targeting OATP2B1

    Microwave-assisted phospha-Michael addition reactions on 13αestrane core

    Get PDF
    Novel 16-modified 13 α-estrone derivatives were synthesized via phospha-Michael addition reactions. Transformations of steroidal α,β-unsaturated ketons were carried out under different conditions in a microwave (MW) reactor. The antiproliferative activities of the newly synthesized compounds against a range of human adherent cancer cell lines (SCC-131, SCC154, Hela, SiHa, C33A, A2780, MCF-7, MDA-MB-231, T47D) were investigated by means of MTT assays. Certain potent derivatives were identified

    Structural dissection of 13-epiestrones based on the interaction with human Organic anion-transporting polypeptide, OATP2B1

    Get PDF
    Human OATP2B1 encoded by the SLCO2B1 gene is a multispecific transporter mediating the cellular uptake of large, organic molecules, including hormones, prostaglandins and bile acids. OATP2B1 is ubiquitously expressed in the human body, with highest expression levels in pharmacologically relevant barriers, like enterocytes, hepatocytes and endothelial cells of the blood-brain-barrier. In addition to its endogenous substrates, OATP2B1 also recognizes clinically applied drugs, such as statins, antivirals, antihistamines and chemotherapeutic agents and influences their pharmacokinetics. On the other hand, OATP2B1 is also overexpressed in various tumors. Considering that elevated hormone uptake by OATP2B1 results in increased cell proliferation of hormone dependent tumors (e.g. breast or prostate), inhibition of OATP2B1 can be a good strategy to inhibit the growth of these tumors. 13-epiestrones represent a potential novel strategy in the treatment of hormone dependent cancers by the suppression of local estrogen production due to the inhibition of the key enzyme of estrone metabolism, 17ß-hydroxysteroid-dehydrogenase type 1 (HSD17ß1). Recently, we have demonstrated that various phosphonated 13-epiestrones are dual inhibitors also suppressing OATP2B1 function. In order to gain better insights into the molecular determinants of OATP2B1 13-epiestrone interaction we investigated the effect of C-2 and C-4 halogen or phenylalkynyl modified epiestrones on OATP2B1 transport function. Potent inhibitors (with EC50 values in the low micromolar range) as well as non-inhibitors of OATP2B1 function were identified. Based on the structure-activity relationship (SAR) of the various 13-epiestrone derivatives we could define structural elements important for OATP2B1 inhibition. Our results may help to understand the drug/inhibitor interaction profile of OATP2B1, and also may be a useful strategy to block steroid hormone entry into tumors

    Structural dissection of 13-epiestrones based on the interaction with human Organic anion-transporting polypeptide, OATP2B1

    Get PDF
    Human OATP2B1 encoded by the SLCO2B1 gene is a multispecific transporter mediating the cellular uptake of large, organic molecules, including hormones, prostaglandins and bile acids. OATP2B1 is ubiquitously expressed in the human body, with highest expression levels in pharmacologically relevant barriers, like enterocytes, hepatocytes and endothelial cells of the blood-brain-barrier. In addition to its endogenous substrates, OATP2B1 also recognizes clinically applied drugs, such as statins, antivirals, antihistamines and chemotherapeutic agents and influences their pharmacokinetics. On the other hand, OATP2B1 is also overexpressed in various tumors. Considering that elevated hormone uptake by OATP2B1 results in increased cell proliferation of hormone dependent tumors (e.g. breast or prostate), inhibition of OATP2B1 can be a good strategy to inhibit the growth of these tumors. 13-epiestrones represent a potential novel strategy in the treatment of hormone dependent cancers by the suppression of local estrogen production due to the inhibition of the key enzyme of estrone metabolism, 17ß-hydroxysteroid-dehydrogenase type 1 (HSD17ß1). Recently, we have demonstrated that various phosphonated 13-epiestrones are dual inhibitors also suppressing OATP2B1 function. In order to gain better insights into the molecular determinants of OATP2B1 13-epiestrone interaction we investigated the effect of C-2 and C-4 halogen or phenylalkynyl modified epiestrones on OATP2B1 transport function. Potent inhibitors (with EC50 values in the low micromolar range) as well as non-inhibitors of OATP2B1 function were identified. Based on the structure-activity relationship (SAR) of the various 13-epiestrone derivatives we could define structural elements important for OATP2B1 inhibition. Our results may help to understand the drug/inhibitor interaction profile of OATP2B1, and also may be a useful strategy to block steroid hormone entry into tumors

    Cytotoxic effect of 13α-estrane derivatives on breast, endometrial and ovarian cancer cell lines

    Get PDF
    Hormone-dependent cancers such as breast, uterine, and ovarian cancers account for more than 35% of all cancers in women. Worldwide, these cancers occur in more than 2.7 million women/year and account for 22% of cancer-related deaths/year. The generally accepted mechanism for the pathophysiology of estrogen-dependent cancers is estrogen receptor-mediated cell proliferation associated with an increased number of mutations. Therefore, drugs that can interfere with either local estrogen formation or estrogen action via estrogen receptors are needed. Estrane derivatives that have low or minimal estrogenic activity can affect both pathways. In this study, we investigated the effect of 36 different estrane derivatives on the proliferation of eight breast, endometrial, and ovarian cancer cell lines and the corresponding three control cell lines. Estrane derivatives 3 and 4_2Cl showed a stronger effect on the endometrial cancer cell lines KLE and Ishikawa, respectively, compared with the control cell line HIEEC, with IC50 values of 32.6 microM and 17.9 microM, respectively. Estrane derivative 4_2Cl was most active in the ovarian cancer cell line COV362 compared to the control cell line HIO80 with an IC50 value of 3.6 microM. In addition, estrane derivative 2_4I showed a strong antiproliferative effect on endometrial and ovarian cancer cell lines, while the effect on the control cell line was slight or absent. The addition of halogen at carbon 2 and/or 4 in estrane derivatives 1 and 2 increased the selectivity for endometrial cancer cells. Overall, these results suggest that single estrane derivatives are efficient cytotoxic agents for endometrial and ovarian cancer cell lines, and thus potential lead compounds for drug development. © 2023 The Author

    Selective antiproliferative effect of C-2 halogenated 13α-estrones on cells expressing Organic anion-transporting polypeptide 2B1 (OATP2B1)

    Get PDF
    Organic anion-transporting polypeptide 2B1 (OATP2B1) is a multispecific transporter mediating the cellular uptake of steroids and numerous drugs. OATP2B1 is abundantly expressed in the intestine and is also present in various tumors. Increased steroid hormone uptake by OATP2B1 has been suggested to promote progression of hormone dependent tumors. 13α-estrones are effective inhibitors of endogenous estrogen formation and are potential candidates to inhibit proliferation of hormone dependent cancers. Recently, we have identified a variety of 13α/β-estrone-based inhibitors of OATP2B1. However, the nature of this interaction, whether these inhibitors are potential transported substrates of OATP2B1 and hence may be enriched in OATP2B1- overexpressing cells, has not yet been investigated. In the current study we explored the antiproliferative effect of the most effective OATP2B1 inhibitor 13α/β-estrones in control and OATP2B1-overexpressing A431 carcinoma cells. We found an increased antiproliferative effect of 3-O-benzyl 13α/β-estrones in both mock transfected and OATP2B1-overexpressing cells. However, C-2 halogenated 13α-estrones had a selective OATP2B1-mediated cell growth inhibitory effect. In order to demonstrate that increased sensitization can be attributed to OATP2B1-mediated cellular uptake, tritium labeled 2-bromo-13α-estrone was synthesized for direct transport measurements. These experiments revealed increased accumulation of [3H]2-bromo-13α-estrone due to OATP2B1 function. Our results indicate that C-2 halogenated 13α-estrones are good candidates in the design of anti-cancer drugs targeting OATP2B1

    Synthesis of novel 13 α-estrone derivatives by Sonogashira coupling as potential 17 β-HSD1 inhibitors

    Get PDF
    Novel 13α-estrone derivatives were synthesized by Sonogashira coupling. Transformations of 2- or 4-iodo regioisomers of 13α-estrone and its 3-methyl ether were carried out under different conditions in a microwave reactor. The 2-iodo isomers were reacted with para-substituted phenylacetylenes using Pd(PPh3)4 as catalyst and CuI as a cocatalyst. Coupling reactions of 4-iodo derivatives could be achieved by changing the catalyst to Pd(PPh3)2Cl2. The product phenethynyl derivatives were partially or fully saturated. Compounds bearing a phenolic OH group furnished benzofurans under the conditions used for the partial saturation. The inhibitory effects of the compounds on human placental 17β-hydroxysteroid dehydrogenase type 1 isozyme (17β-HSD1) were investigated by an in vitro radiosubstrate incubation method. Certain 3-hydroxy-2-phenethynyl or -phenethyl derivatives proved to be potent 17β-HSD1 inhibitors, displaying submicromolar IC50 values

    Synthesis and evaluation of AKR1C inhibitory properties of A-ring halogenated oestrone derivatives

    Get PDF
    Enzymes AKR1C regulate the action of oestrogens, androgens, and progesterone at the pre-receptor level and are also associated with chemo-resistance. The activities of these oestrone halides were investigated on recombinant AKR1C enzymes. The oestrone halides with halogen atoms at both C-2 and C-4 positions (13β-, 13α-methyl-17-keto halogen derivatives) were the most potent inhibitors of AKR1C1. The lowest IC(50) values were for the 13α-epimers 2_2I,4Br and 2_2I,4Cl (IC(50), 0.7 μM, 0.8 μM, respectively), both of which selectively inhibited the AKR1C1 isoform. The 13α-methyl-17-keto halogen derivatives 2_2Br and 2_4Cl were the most potent inhibitors of AKR1C2 (IC(50), 1.5 μM, 1.8 μM, respectively), with high selectivity for the AKR1C2 isoform. Compound 1_2Cl,4Cl showed the best AKR1C3 inhibition, and it also inhibited AKR1C1 (Ki: AKR1C1, 0.69 μM; AKR1C3, 1.43 μM). These data show that halogenated derivatives of oestrone represent a new class of potent and selective AKR1C inhibitors as lead compounds for further optimisations

    Microwave-assisted Pd-catalyzed C-P or C-C cross couplings on 13α-estrane core

    Get PDF
    Novel 2- or 4-substituted 13α-estrone derivatives were synthesized via Hirao or Suzuki reaction. Transformations of 2- and/or 4-halogenated derivatives of 13α-estrone and its 3- benzyl or -methyl ether were carried out in a microwave (MW) reactor. Facile and efficient CC or C-P coupling procedures were established using Pd or Ni catalysts. The newly synthesized compounds might have promising antitumoral properties
    corecore