208 research outputs found

    Atomic clocks: new prospects in metrology and geodesy

    Full text link
    We present the latest developments in the field of atomic clocks and their applications in metrology and fundamental physics. In the light of recent advents in the accuracy of optical clocks, we present an introduction to the relativistic modelization of frequency transfer and a detailed review of chronometric geodesy.Comment: Proceedings of the Workshop "Relativistic Positioning Systems and their Scientific Applications" held in Brdo near Kranj, Slovenia, 19-21 September 2012. To appear in Acta Futura (http://www.esa.int/gsp/ACT/publications/ActaFutura/

    Minimizing the Dick Effect in an Optical Lattice Clock

    Full text link
    We discuss the minimization of the Dick effect in an optical lattice clock. We show that optimizing the time sequence of operation of the clock can lead to a significant reduction of the clock stability degradation by the frequency noise of the interrogation laser. By using a non-destructive detection of the atoms, we are able to recycle most of the atoms between cycles and consequently to strongly reduce the time spent capturing the atoms in each cycle. With optimized parameters, we expect a fractional Allan deviation better than 2E-16τ1/2\tau^{-1/2} for the lattice clock.Comment: 6 pages, 10 figures. Submitted to IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Contro

    Tight bound on coherent states quantum key distribution with heterodyne detection

    Full text link
    We propose a new upper bound for the eavesdropper's information in the direct and reverse reconciliated coherent states quantum key distribution protocols with heterodyne detection. This bound is derived by maximizing the leaked information over the symplectic group of transformations that spans every physical Gaussian attack on individual pulses. We exhibit four different attacks that reach this bound, which shows that this bound is tight. Finally, we compare the secret key rate obtained with this new bound to the homodyne rate.Comment: 8 pages, 3 figure

    Non-destructive measurement of the transition probability in a Sr optical lattice clock

    Full text link
    We present the experimental demonstration of non-destructive probing of the 1S0-3P0 clock transition probability in an optical lattice clock with 87Sr atoms. It is based on the phase shift induced by the atoms on a weak off-resonant laser beam. The method we propose is a differential measurement of this phase shift on two modulation sidebands with opposite detuning with respect to the 1S0-1P1 transition, allowing a detection limited by the photon shot noise. We have measured an atomic population of 10^4 atoms with a signal to noise ratio of 100 per cycle, while keeping more than 95% of the atoms in the optical lattice with a depth of 0.1 mK. The method proves simple and robust enough to be operated as part of the whole clock setup. This detection scheme enables us to reuse atoms for subsequent clock state interrogations, dramatically reducing the loading time and thereby improving the clock frequency stability.Comment: 4 pages, 5 figure

    Observation and cancellation of the dc Stark shift in strontium optical lattice clocks

    Full text link
    We report on the observation of a dc Stark frequency shift at the 101310^{-13} level by comparing two strontium optical lattice clocks. This frequency shift arises from the presence of electric charges trapped on dielectric surfaces placed under vacuum close to the atomic sample. We show that these charges can be eliminated by shining UV light on the dielectric surfaces, and characterize the residual dc Stark frequency shift on the clock transition at the 101810^{-18} level by applying an external electric field. This study shows that the dc Stark shift can play an important role in the accuracy budget of lattice clocks, and should be duly taken into account

    Experimental implementation of non-Gaussian attacks on a continuous-variable quantum key distribution system

    Get PDF
    An intercept-resend attack on a continuous-variable quantum-key-distribution protocol is investigated experimentally. By varying the interception fraction, one can implement a family of attacks where the eavesdropper totally controls the channel parameters. In general, such attacks add excess noise in the channel, and may also result in non-Gaussian output distributions. We implement and characterize the measurements needed to detect these attacks, and evaluate experimentally the information rates available to the legitimate users and the eavesdropper. The results are consistent with the optimality of Gaussian attacks resulting from the security proofs.Comment: 4 pages, 5 figure

    Lattice Induced Frequency Shifts in Sr Optical Lattice Clocks at the 101710^{-17} Level

    Full text link
    We present a comprehensive study of the frequency shifts associated with the lattice potential for a Sr lattice clock. By comparing two such clocks with a frequency stability reaching 5×10175\times 10^{-17} after a one hour integration time, and varying the lattice depth up to U0=900ErU_0=900 \, E_r with ErE_r being the recoil energy, we evaluate lattice related shifts with an unprecedented accuracy. We put the first experimental upper bound on the recently predicted frequency shift due to the magnetic dipole (M1) and electric quadrupole (E2) interactions. This upper bound is significantly smaller than the theoretical upper limit. We also give a new upper limit on the effect of hyperpolarizability with an improvement by more than one order of magnitude. Finally, we report the first observation of the vector and tensor shifts in a lattice clock. Combining these measurements, we show that all known lattice related perturbation will not affect the clock accuracy down to the 101710^{-17} level, even for very deep lattices, up to U0=150ErU_0=150\,E_r

    Ultra-stable clock laser system development towards space applications

    Get PDF
    International audienceThe increasing performance of optical lattice clocks has made them attractive for scientific applications in space and thus has pushed the development of their components including the interrogation lasers of the clock transitions towards being suitable for space, which amongst others requires making them more power efficient, radiation hardened, smaller, lighter as well as more mechanically stable. Here we present the development towards a space-compatible interrogation laser system for a strontium lattice clock constructed within the Space Optical Clock (SOC2) project where we have concentrated on mechanical rigidity and size. The laser reaches a fractional frequency instability of 7.9 × 10−16 at 300 ms averaging time. The laser system uses a single extended cavity diode laser that gives enough power for interrogating the atoms, frequency comparison by a frequency comb and diagnostics. It includes fibre link stabilisation to the atomic package and to the comb. The optics module containing the laser has dimensions 60 × 45 × 8 cm3; and the ultra-stable reference cavity used for frequency stabilisation with its vacuum system takes 30 × 30 × 30 cm3. The acceleration sensitivities in three orthogonal directions of the cavity are 3.6 × 10−10/g, 5.8 × 10−10/g and 3.1 × 10−10/g, where g ≈ 9.8 m/s2 is the standard gravitational acceleration

    Guidelines for developing optical clocks with 101810^{-18} fractional frequency uncertainty

    Get PDF
    There has been tremendous progress in the performance of optical frequency standards since the first proposals to carry out precision spectroscopy on trapped, single ions in the 1970s. The estimated fractional frequency uncertainty of today's leading optical standards is currently in the 101810^{-18} range, approximately two orders of magnitude better than that of the best caesium primary frequency standards. This exceptional accuracy and stability is resulting in a growing number of research groups developing optical clocks. While good review papers covering the topic already exist, more practical guidelines are needed as a complement. The purpose of this document is therefore to provide technical guidance for researchers starting in the field of optical clocks. The target audience includes national metrology institutes (NMIs) wanting to set up optical clocks (or subsystems thereof) and PhD students and postdocs entering the field. Another potential audience is academic groups with experience in atomic physics and atom or ion trapping, but with less experience of time and frequency metrology and optical clock requirements. These guidelines have arisen from the scope of the EMPIR project "Optical clocks with 1imes10181 imes 10^{-18} uncertainty" (OC18). Therefore, the examples are from European laboratories even though similar work is carried out all over the world. The goal of OC18 was to push the development of optical clocks by improving each of the necessary subsystems: ultrastable lasers, neutral-atom and single-ion traps, and interrogation techniques. This document shares the knowledge acquired by the OC18 project consortium and gives practical guidance on each of these aspects

    An optical second with lattice clocks

    No full text
    International audienc
    corecore