1,636 research outputs found

    FNT-based reed-solomon erasure codes

    Get PDF
    This paper presents a new construction of Maximum-Distance Separable (MDS) Reed-Solomon erasure codes based on Fermat Number Transform (FNT). Thanks to FNT, these codes support practical coding and decoding algorithms with complexity O(n log n), where n is the number of symbols of a codeword. An open-source implementation shows that the encoding speed can reach 150Mbps for codes of length up to several 10,000s of symbols. These codes can be used as the basic component of the Information Dispersal Algorithm (IDA) system used in a several P2P systems

    PRISE: An Integrated Platform for Research and Teaching of Critical Embedded Systems

    Get PDF
    In this paper, we present PRISE, an integrated workbench for Research and Teaching of critical embedded systems at ISAE, the French Institute for Space and Aeronautics Engineering. PRISE is built around state-of-the-art technologies for the engineering of space and avionics systems used in Space and Avionics domain. It aims at demonstrating key aspects of critical, real-time, embedded systems used in the transport industry, but also validating new scientific contributions for the engineering of software functions. PRISE combines embedded and simulation platforms, and modeling tools. This platform is available for both research and teaching. Being built around widely used commercial and open source software; PRISE aims at being a reference platform for our teaching and research activities at ISAE

    Getting Into Networks and Clusters: Evidence on the GNSS composite knowledge process in (and from) Midi-Pyrénées

    Get PDF
    This paper aims to contribute to the empirical identification of clusters by proposing methodological issues based on network analysis. We start with the detection of a composite knowledge process rather than a territorial one stricto sensu. Such a consideration allows us to avoid the overestimation of the role played by geographical proximity between agents, and grasp its ambivalence in knowledge relations. Networks and clusters correspond to the complex aggregation process of bi or n-lateral relations in which agents can play heterogeneous structural roles. Their empirical reconstitution requires thus to gather located relational data, whereas their structural properties analysis requires to compute a set of indexes developed in the field of the social network analysis. Our theoretical considerations are tested in the technological field of GNSS (Global Satellite Navigation Systems). We propose a sample of knowledge relations based on collaborative R&D projects and discuss how this sample is shaped and why we can assume its representativeness. The network we obtain allows us to show how the composite knowledge process gives rise to a structure with a peculiar combination of local and distant relations. Descriptive statistics and structural properties show the influence or the centrality of certain agents in the aggregate structure, and permit to discuss the complementarities between their heterogeneous knowledge profiles. Quantitative results are completed and confirmed by an interpretative discussion based on a run of semi-structured interviews. Concluding remarks provide theoretical feedbacks.Knowledge, Networks, Economic Geography, Cluster, GNSS

    Negative reflection of elastic guided waves in chaotic and random scattering media

    Get PDF
    The propagation of waves in complex media can be harnessed either by taming the incident wave-field impinging on the medium or by forcing waves along desired paths through its careful design. These two alternative strategies have given rise to fascinating concepts such as time reversal or negative refraction. Here, we show how these two processes are intimately linked through the negative reflection phenomenon. A negative reflecting mirror converts a wave of positive phase velocity into its negative counterpart and vice versa. In this article, we experimentally demonstrate this phenomenon with elastic waves in a 2D billiard and in a disordered plate by means of laser interferometry. Despite the complexity of such configurations, the negatively reflected wave field focuses back towards the initial source location, thereby mimicking a phase conjugation operation while being a fully passive process. The super-focusing capability of negative reflection is also highlighted in a monochromatic regime. The negative reflection phenomenon is not restricted to guided elastic waves since it can occur in zero-gap systems such as photonic crystals, chiral metamaterials or graphene. Negative reflection can thus become a tool of choice for the control of waves in all fields of wave physics.Comment: 9 pages, 6 figure

    Low-rate coding using incremental redundancy for GLDPC codes

    Get PDF
    In this paper we propose a low-rate coding method, suited for application-layer forward error correction. Depending on channel conditions, the coding scheme we propose can switch from a fixed-rate LDPC code to various low-rate GLDPC codes. The source symbols are first encoded by using a staircase or triangular LDPC code. If additional symbols are needed, the encoder is then switched to the GLDPC mode and extra-repair symbols are produced, on demand. In order to ensure small overheads, we consider irregular distributions of extra-repair symbols optimized by density evolution techniques. We also show that increasing the number of extra-repair symbols improves the successful decoding probability, which becomes very close to 1 for sufficiently many extra-repair symbols
    corecore