340 research outputs found

    Boltzmann-type approach to transport in weakly interacting one-dimensional fermionic systems

    Full text link
    We investigate transport properties of one-dimensional fermionic tight binding models featuring nearest and next-nearest neighbor hopping, where the fermions are additionally subject to a weak short range mutual interaction. To this end we employ a pertinent approach which allows for a mapping of the underlying Schr\"odinger dynamics onto an adequate linear quantum Boltzmann equation. This approach is based on a suitable projection operator method. From this Boltzmann equation we are able to numerically obtain diffusion coefficients in the case of non-vanishing next-nearest neighbor hopping, i.e., the non-integrable case, whereas the diffusion coefficient diverges without next-nearest neighbor hopping. For the latter case we analytically investigate the decay behavior of the current with the result that arbitrarily small parts of the current relax arbitrarily slowly which suggests anomalous diffusive transport behavior within the scope of our approach.Comment: 6 pages, 4 figures, accepted for publication in Phys. Rev.

    Lipid droplets: A dynamic organelle moves into focus.

    Get PDF
    Lipid droplets (LDs) were perceived as static storage deposits, which passively participate in the energy homeostasis of both cells and entire organisms. However, this view has changed recently after the realization of a complex and highly dynamic LD proteome. The proteome contains key components of the fat mobilization system and proteins that suggest LD interactions with a variety of cell organelles, including the endoplasmic reticulum, mitochondria and peroxisomes. The study of LD cell biology, including cross-talk with other organelles, the trafficking of LDs in the cell and regulatory events involving the LD coat proteins is now on the verge of leaving its infancy and unfolds that LDs are highly dynamic cellular organelles

    Absence of surface mode in a visco-elastic material with surface tension

    Full text link
    The surface waves in the visco-elastic media with the surface tension are studied using the Voigt-Kelvin model of the visco-elasticity. It is shown that the surface mode of oscillation does not exist in the parameter region where the effect of surface tension is larger than that of the elastic stress at the surface unless the viscous stress masks the elastic stress in the bulk. In the region, the surface oscillation is suppressed and the oscillation beneath the surface diffuses after the pulse goes into the bulk. The experimental relevance of the present results is also discussed.Comment: 5 pages, 3 figure

    Binding between two-component bosons in one dimension

    Full text link
    We investigate the ground state of one-dimensional few-atom Bose-Bose mixtures under harmonic confinement throughout the crossover from weak to strong inter-species attraction. The calculations are based on the numerically exact multi-configurational time-dependent Hartree method. For repulsive components we detail the condition for the formation of a molecular Tonks-Girardeau gas in the regime of intermediate inter-species interactions, and the formation of a molecular condensate for stronger coupling. Beyond a critical inter-species attraction, the system collapses to an overall bound state. Different pathways emerge for unequal particle numbers and intra-species interactions. In particular, for mixtures with one attractive component, this species can be viewed as an effective potential dimple in the trap center for the other, repulsive component.Comment: 10 pages, 10 figure
    corecore