18 research outputs found
Properties of lightweight particleboard made with sunflower stalk particles in the core layer
In this study we assessed the efficacy of manufacturing lightweight particleboards using sunflower (Helianthus annuus L.) stalk particles. Three-layer lightweight particleboards with target densities of 350, 450 and 550 kg/m3 were produced with different proportions of wood-to-sunflower stalk particles (100:0%, 75:25%, 50:50%, 25:75%, 0:100%) in the core layer. The outer layers consisted only of wood particles. The boards made entirely with wood particles in the outer and core layers were reference boards. Conventional urea-formaldehyde (UF) resin was used to bond the particles. It was found that the replacement of wood particles in the core layer with sunflower stalk particles led to an improvement in the physical and mechanical properties of lightweight UF-bonded particleboards. Three-layer boards with the optimum combination of 100% wood particles in the outer layers and 100% sunflower stalk particles in the core layer had slightly higher bending strength (MOR) and modulus of elasticity (MOE) than boards made entirely from 100% wood particles, but much greater internal bonding strength (IB), lower water absorption (WA) and less thickness swelling (TS) at the same board density. The MOR, MOE and IB values for 550 kg/m3 boards containing 100% sunflower particles in the core layer were higher than the reference boards by 16.3%, 16.6% and 62.7%, respectively. The MOR, MOE and IB of lightweight particleboards with densities of 450 and 550 kg/m3 made with 100% sunflower particles in the core layer fully complied with the CEN/TS 16368 standard for both types of board, LP1 and LP2. Substitution of wood particles with sunflower stalk particles did not cause negative changes in the formaldehyde content of the boards.Preprin
Effect of Primary Spruce Lamella Aging on the Bending Characteristics of Glulam Beams
Glued laminated (glulam) beams are used in the roofs, ceilings and walls of buildings as well as in bridges and towers. At present, with the limitation of tree harvesting, the production of glulam beams from recycled wood sources is implemented with the proviso that their mechanical properties and resistance to pests, fire and weathering will not be aggravated. This work deals with the primary effect of aging Norway spruce wood (Picea abies Karst. L.) lamellas on the moduli of rupture (MOR) and elasticity (MOE) in bending of three-layer glulam beams composed of sound and aged lamellas and polyurethane (PUR) glue. Three methods of lamella aging were used: (A) natural, lasting 60 years in the form of roof trusses with a greater or lesser degree of bio-attack by woodworm (Anobium punctatum De Geer); (B) artificial, caused by increased temperatures from 160 to 220 °C for 4 h; (C) artificial, caused by 2% water solutions of inorganic preservatives, namely, CuSO4 × 5H2O, ZnCl2, H3BO3 or (NH4)2SO4, for 28 days. The lowest MOR values were determined for glulam beams in which all three lamellas or two surface lamellas had a greater degree of bio-attack (60.5 MPa, a decrease of 25.9%) or were exposed to primary aging at 220 °C (62.6 MPa, a decrease of 23.3%). On the contrary, the exposure of lamellas to 160 or 180 °C did not significantly influence the MOR of beams (76.0–82.7 MPa, an average decrease of 1.6%). The MOE of glulam beams ranged from 7540 to 10,432 MPa without an obvious influence of the method of lamella aging or their location in the beams. Linear correlations between the MOR or MOE of glulam beams and the shear strength (σ) of glued joints, if both composite types consisted of similarly aged lamellas, were only slightly significant or insignificant
Effect of Primary Spruce Lamella Aging on the Bending Characteristics of Glulam Beams
Glued laminated (glulam) beams are used in the roofs, ceilings and walls of buildings as well as in bridges and towers. At present, with the limitation of tree harvesting, the production of glulam beams from recycled wood sources is implemented with the proviso that their mechanical properties and resistance to pests, fire and weathering will not be aggravated. This work deals with the primary effect of aging Norway spruce wood (Picea abies Karst. L.) lamellas on the moduli of rupture (MOR) and elasticity (MOE) in bending of three-layer glulam beams composed of sound and aged lamellas and polyurethane (PUR) glue. Three methods of lamella aging were used: (A) natural, lasting 60 years in the form of roof trusses with a greater or lesser degree of bio-attack by woodworm (Anobium punctatum De Geer); (B) artificial, caused by increased temperatures from 160 to 220 °C for 4 h; (C) artificial, caused by 2% water solutions of inorganic preservatives, namely, CuSO4 × 5H2O, ZnCl2, H3BO3 or (NH4)2SO4, for 28 days. The lowest MOR values were determined for glulam beams in which all three lamellas or two surface lamellas had a greater degree of bio-attack (60.5 MPa, a decrease of 25.9%) or were exposed to primary aging at 220 °C (62.6 MPa, a decrease of 23.3%). On the contrary, the exposure of lamellas to 160 or 180 °C did not significantly influence the MOR of beams (76.0–82.7 MPa, an average decrease of 1.6%). The MOE of glulam beams ranged from 7540 to 10,432 MPa without an obvious influence of the method of lamella aging or their location in the beams. Linear correlations between the MOR or MOE of glulam beams and the shear strength (σ) of glued joints, if both composite types consisted of similarly aged lamellas, were only slightly significant or insignificant
Bonding of Selected Hardwoods with PVAc Adhesive
The bonding of wood with assembly adhesives is crucial for manufacturing wood composites, such as solid wood panels, glulam, furniture parts, and sport and musical instruments. This work investigates 13 hardwoods—bangkirai, beech, black locust, bubinga, ipé, iroko, maçaranduba, meranti, oak, palisander, sapelli, wengé and zebrano—and analyzes the impact of their selected structural and physical characteristics (e.g., the density, cold water extract, pH value, roughness, and wettability) on the adhesion strength with the polyvinyl acetate (PVAc) adhesive Multibond SK8. The adhesion strength of the bonded hardwoods, determined by the standard EN 205, ranged in the dry state from 9.5 MPa to 17.2 MPa, from 0.6 MPa to 2.6 MPa in the wet state, and from 8.5 MPa to 19.2 MPa in the reconditioned state. The adhesion strength in the dry state of the bonded hardwoods was not influenced by their cold water extracts, pH values, or roughness parallel with the grain. On the contrary, the adhesion strength was significantly with positive tendency influenced by their higher densities, lower roughness parameters perpendicular to the grain, and lower water contact angles
Investigation into mechanical, surface and adhesive properties of date palm wood-polyolefin micro composites
Wood-plastic composites are composite materials made of wood fibre or other lignocellulosic materials and thermoplastic(s). Date palms are one of the potential replacements
of insufficient timber sources in the Middle East and the Horn of Africa countries. Low
density polyethylene (LDPE) was blended with date palm wood (DPW) (Phoenix
dactylifera) powder to prepare composites with the concentrations of filler ranging from 10
to 70 wt. %. The Young´s modulus of the composites significantly increased with an increase
in the filler content in the entire concentration range. The maximum value of 1933 MPa for
the composite filled with 70 wt.% of the filler is approximately 13 times higher than that for
the neat LDPE. The incorporation of DPW into the LDPE matrix led to a significant increase
in the polarity of composites and to an increase in their adhesion to polar substrates.This contribution was supported by Ministry of Education of the Slovak Republic and Slovak Academy of Sciences, project VEGA, Grant No. 1/0570/17. This research was supported by the Slovak Research and Development Agency under the contracts No. APVV-16-0177, APVV-17-0583 and APVV-18-0378.Scopu
Selected Properties of Veneered Lightweight Particleboards with Expanded Polystyrene
The aim of this study was to improve the properties of lightweight particleboards by their veneering. The industrially produced wood particles, rotary-cut birch veneer, expanded polystyrene (EPS) granules and urea-formaldehyde (UF) resin were used to manufacture non-veneered and veneered boards in laboratory conditions. The boards were manufactured with different densities of 350, 450 and 550 kg/m3 and with various levels of EPS content 4, 7 and 10%. Boards without EPS granules as the reference were also manufactured. Bending strength (MOR), modulus of elasticity in bending (MOE), internal bond (IB) strength, thickness swelling (TS) and water absorption (WA) of lightweight particleboards were determined. This study confirmed that veneering of lightweight particleboards by birch veneer improved mechanical properties significantly. The MOR and MOE of veneered boards throughout the whole density range of 350–550 kg/m3 meet the requirements of the CEN/TS 16368 for lightweight particleboards types LP1 and LP2. The IB strength of veneered boards only with density of 550 kg/m3 meets the requirements of CEN/TS 16368 (type LP1). The MOR, MOE and IB of non-veneered boards also meet the requirements of CEN/TS 16368 (type LP1) except boards with density of 350 kg/m3 for MOR and MOE, and except densities of 350 and 450 kg/m3 for IB
The Effect of Diffusive Impregnation of Birch Veneers with Fire Retardant on Plywood Properties
Wood is a natural, organic material that cannot be exposed to high temperatures, fire, or heat, especially when wood or wood-based materials are used as construction elements. The fire-extinguishing composition of di-ammonium phosphate, ammonium sulfate, and ammonium bromide (DAB) was used to increase the fire-resistance of birch plywood. The effects of various parameters of diffusive impregnation of the veneer (temperature and concentration of impregnating solution, duration of impregnation) were investigated. Their dependence was linear for the temperature of impregnating solution, and logarithmic for concentration of impregnating solution and duration of impregnation. Increased retention of fire retardant improved plywood fire resistance. However, considering the quality of impregnation, energy costs, and plywood properties, the following parameters of wet veneer impregnation are recommended: a temperature of impregnating solution of 22 °C, concentration of 30%, and duration of impregnation of 8 min
Modified Buckwheat Husk as a Filler for Urea–Formaldehyde Resin in Plywood Production
The aim of the presented research was to determine the suitability of both non-modified and modified buckwheat husk (BH) as a filler for urea–formaldehyde adhesive in plywood production. The effect of two modification methods, acetylation and silanization, was investigated. Infrared spectroscopy outcomes confirmed that both acetylation and silanization of the filler had occurred. Based on the results, it was found that the introduction of BH had a significant effect on both the adhesive properties and the characteristics of the manufactured plywood. The application of non-modified husks led to a reduction in viscosity and an extension of the gelation time, and the produced plywood boards were characterized by reduced bonding quality and increased delamination. Modification of the husk surface by acetylation and silanization with 3-aminopropyltriethoxysilane contributed to the noticeable improvement in the resin properties. On the other hand, the improvement in plywood properties, consisting of the increase in bonding quality and reduced delamination, was observed only in the case of the silanized husk. Furthermore, the use of non-modified and acetylated husk did not significantly influence the formaldehyde emission. The reduction in the investigated emission of formaldehyde was observed only in the case of variants containing 15 and 20% of silanized buckwheat husk