405 research outputs found

    Modelling the evolution and nucleosynthesis of carbon-enhanced metal-poor stars

    Full text link
    We present the results of binary population simulations of carbon-enhanced metal-poor (CEMP) stars. We show that nitrogen and fluorine are useful tracers of the origin of CEMP stars, and conclude that the observed paucity of very nitrogen-rich stars puts strong constraints on possible modifications of the initial mass function at low metallicity. The large number fraction of CEMP stars may instead require much more efficient dredge-up from low-metallicity asymptotic giant branch stars.Comment: 6 pages, 1 figure, to appear in the proceedings of IAU Symposium 252 "The Art of Modelling Stars in the 21st Century", April 6-11, 2008, Sanya, Chin

    Reaction rate uncertainties and the operation of the NeNa and MgAl chains during HBB in intermediate-mass AGB stars

    Get PDF
    We test the effect of proton-capture reaction rate uncertainties on the abundances of the Ne, Na, Mg and Al isotopes processed by the NeNa and MgAl chains during hot bottom burning (HBB) in asymptotic giant branch (AGB) stars of intermediate mass between 4 and 6 solar masses and metallicities between Z=0.0001 and 0.02. We provide uncertainty ranges for the AGB stellar yields, for inclusion in galactic chemical evolution models, and indicate which reaction rates are most important and should be better determined. We use a fast synthetic algorithm based on detailed AGB models. We run a large number of stellar models, varying one reaction per time for a very fine grid of values, as well as all reactions simultaneously. We show that there are uncertainties in the yields of all the Ne, Na, Mg and Al isotopes due to uncertain proton-capture reaction rates. The most uncertain yields are those of 26Al and 23Na (variations of two orders of magnitude), 24Mg and 27Al (variations of more than one order of magnitude), 20Ne and 22Ne (variations between factors 2 and 7). In order to obtain more reliable Ne, Na, Mg and Al yields from IM-AGB stars the rates that require more accurate determination are: 22Ne(p,g)23Na, 23Na(p,g)24Mg, 25Mg(p,g)26Al, 26Mg(p,g)27Al and 26Al(p,g)27Si. Detailed galactic chemical evolution models should be constructed to address the impact of our uncertainty ranges on the observational constraints related to HBB nucleosynthesis, such as globular cluster chemical anomalies.Comment: accepted for publication on Astronomy & Astrophysic

    The s-process in stellar population synthesis: a new approach to understanding AGB stars

    Get PDF
    Thermally pulsating asymptotic giant branch (AGB) stars are the main producers of slow neutron capture (s-) process elements, but there are still large uncertainties associated with the formation of the main neutron source, 13C, and with the physics of these stars in general. Observations of s-process element enhancements in stars can be used as constraints on theoretical models. For the first time we apply stellar population synthesis to the problem of s-process nucleosynthesis in AGB stars, in order to derive constraints on free parameters describing the physics behind the third dredge-up and the properties of the neutron source. We utilize a rapid evolution and nucleosynthesis code to synthesize different populations of s-enhanced stars, and compare them to their observational counterparts to find out for which values of the free parameters in the code the synthetic populations fit best to the observed populations. These free parameters are the amount of third dredge-up, the minimum core mass for third dredge-up, the effectiveness of 13C as a source of neutrons and the size in mass of the 13C pocket. We find that galactic disk objects are reproduced by a spread of a factor of two in the effectiveness of the 13C neutron source. Lower metallicity objects can be reproduced only by lowering by at least a factor of 3 the average value of the effectiveness of the 13C neutron source needed for the galactic disk objects. Using observations of s-process elements in post-AGB stars as constraints we find that dredge-up has to start at a lower core mass than predicted by current theoretical models, that it has to be substantial (λ\lambda >~ 0.2) in stars with mass M <~ 1.5 M_sun and that the mass of the 13C pocket must be about 1/40 that of the intershell region.Comment: 16 pages, 15 figures, accepted for publication in Astronomy & Astrophysic

    The interaction of core-collapse supernova ejecta with a stellar companion

    Get PDF
    The progenitors of many core-collapse supernovae (CCSNe) are expected to be in binary systems. By performing a series of three-dimensional hydrodynamical simulations, we investigate how CCSN explosions affect their binary companion. We find that the amount of removed stellar mass, the resulting impact velocity, and the chemical contamination of the companion that results from the impact of the SN ejecta, strongly increases with decreasing binary separation and increasing explosion energy. Also, it is foud that the impact effects of CCSN ejecta on the structure of main-sequence (MS) companions, and thus their long term post-explosion evolution, is in general not be dramatic.Comment: 5 pages, 3 figures, poster contribution: IAU Symposium 346 "High Mass X-ray Binaries: illuminating the passage from massive binaries to merging compact objects", Vienna, Austria, 27-31 August 2018. arXiv admin note: substantial text overlap with arXiv:1509.0363

    Models of the circumstellar medium of evolving, massive runaway stars moving through the Galactic plane

    Get PDF
    At least 5 per cent of the massive stars are moving supersonically through the interstellar medium (ISM) and are expected to produce a stellar wind bow shock. We explore how the mass loss and space velocity of massive runaway stars affect the morphology of their bow shocks. We run two-dimensional axisymmetric hydrodynamical simulations following the evolution of the circumstellar medium of these stars in the Galactic plane from the main sequence to the red supergiant phase. We find that thermal conduction is an important process governing the shape, size and structure of the bow shocks around hot stars, and that they have an optical luminosity mainly produced by forbidden lines, e.g. [OIII]. The Ha emission of the bow shocks around hot stars originates from near their contact discontinuity. The Hα\alpha emission of bow shocks around cool stars originates from their forward shock, and is too faint to be observed for the bow shocks that we simulate. The emission of optically-thin radiation mainly comes from the shocked ISM material. All bow shock models are brighter in the infrared, i.e. the infrared is the most appropriate waveband to search for bow shocks. Our study suggests that the infrared emission comes from near the contact discontinuity for bow shocks of hot stars and from the inner region of shocked wind for bow shocks around cool stars. We predict that, in the Galactic plane, the brightest, i.e. the most easily detectable bow shocks are produced by high-mass stars moving with small space velocities.Comment: 22 pages, 24 figure

    The interaction of core-collapse supernova ejecta with a companion star

    Full text link
    The progenitors of many CCSNe are expected to be in binary systems. After the SN explosion, the companion may suffer from mass stripping and be shock heated as a result of the impact of the SN ejecta. If the binary system is disrupted, the companion is ejected as a runaway and hypervelocity star. By performing a series of 3D hydrodynamical simulations of the collision of SN ejecta with the companion star, we investigate how CCSN explosions affect their companions. We use the BEC code to construct the detailed companion structure at the time of SN explosion. The impact of the SN blast wave on the companion is followed by means of 3D SPH simulations using the Stellar GADGET code. For main-sequence (MS) companions, we find that the amount of removed mass, impact velocity, and chemical contamination of the companion that results from the impact of the SN ejecta, strongly increases with decreasing binary separation and increasing explosion energy. Their relationship can be approximately fitted by power laws, which is consistent with the results obtained from impact simulations of SNe~Ia. However, we find that the impact velocity is sensitive to the momentum profile of the outer SN ejecta and, in fact, may decrease with increasing ejecta mass, depending on the modeling of the ejecta. Because most companions to Ib/c CCSNe are in their MS phase at the moment of the explosion, combined with the strongly decaying impact effects with increasing binary separation, we argue that the majority of these SNe lead to inefficient mass stripping and shock heating of the companion star following the impact of the ejecta. Our simulations show that the impact effects of Ib/c SN ejecta on the structure of MS companions, and thus their long-term post-explosion evolution, is in general not dramatic. We find that at most 10% of their mass is lost, and their resulting impact velocities are less than 100 km/s.Comment: Accepted for publication in Astronomy and Astrophysics, some minor typographical errors are fixed, the affiliation of second author is correcte

    Binary companions of nearby supernova remnants found with Gaia

    Get PDF
    © ESO, 2017. Aims. We search for runaway former companions of the progenitors of nearby Galactic core-collapse supernova remnants (SNRs) in the Tycho-Gaia astrometric solution (TGAS). Methods. We look for candidates among a sample of ten SNRs with distances 2kpc, taking astrometry and G magnitude from TGAS and B,V magnitudes from the AAVSO Photometric All-Sky Survey (APASS). A simple method of tracking back stars and finding the closest point to the SNR centre is shown to have several failings when ranking candidates. In particular, it neglects our expectation that massive stars preferentially have massive companions. We evolve a grid of binary stars to exploit these covariances in the distribution of runaway star properties in colour - magnitude - ejection velocity space. We construct an analytic model which predicts the properties of a runaway star, in which the model paramet ers are the location in the grid of progenitor binaries and the properties of the SNR. Using nested sampling we calculate the Bayesian evidence for each candidate to be the runaway and simultaneously constrain the properties of that runaway and of the SNR itself. Results. We identify four likely runaway companions of the Cygnus Loop (G074.0-08.5), HB 21 (G089.0+ 04.7), S147 (G180.0+ 01.7) and the Monoceros Loop (G205.5+ 00.5). HD 37424 has previously been suggested as the companion of S147, however the other three stars are new candidates. The favoured companion of HB 21 is the Be star BD+50 3188 whose emission-line features could be explained by pre-supernova mass transfer from the primary. There is a small probability that the 2M candidate runaway TYC 2688-1556-1 associated with the Cygnus Loop is a hypervelocity star. If the Monoceros Loop is related to the on-going star formation in the Mon OB2 association, the progenitor of the Monoceros Loop is required to be more massive than 40M which is in tension with the posterior for our candidate runaway star HD 261393.DPB is grateful to the Science and Technology Facilities Council (STFC) for providing Ph.D. funding. M.F. is supported by a Royal Society – Science Foundation Ireland University Research Fellowship. This work was partly supported by the European Union FP7 programme through ERC grant number 320360. RGI thanks the STFC for funding his Rutherford fellowship under grant ST/L003910/1 and Churchill College, Cambridge for his fellowship
    • …
    corecore