141 research outputs found
Numerical renormalization group approach to a quartet quantum-dot array connected to reservoirs:gate-voltage dependence of the conductance
The ground-state properties of quartet quantum-dot arrays are studied using
the numerical renormalization group (NRG) method with a four-site Hubbard model
connected to two non-interacting leads. Specifically, we calculate the
conductance and local charge in the dots from the many-body phase shifts, which
can be deduced from the fixed-point eigenvalues of NRG. As a function of the
on-site energy which corresponds to the gate voltage, the
conductance shows alternatively wide peak and valley. Simultaneously, the total
number of electrons in the four dots shows a quantized stair case
behavior due to a large Coulomb interaction . The conductance plateaus of
the Unitary limit emerging for odd are caused by the Kondo effect.
The valleys of the conductance emerge for even , and their width
becomes substantially large at half-filling. It can be regarded as a kind of
the Mott-Hubbard insulating behavior manifesting in a small system. These
structures of the plateaus and valleys become weak for large values of the
hybridization strength between the chain and leads. We also discuss
the parallel conductance for the array connected to four leads.Comment: 8 pages, 9 figure
Kondo Effect and Josephson Current through a Quantum Dot between Two Superconductors
We investigate the supercurrent through a quantum dot for the whole range of
couplings using the numerical renormalization group method. We find that the
Josephson current switches abruptly from a - to a 0-phase as the coupling
increases. At intermediate couplings the total spin in the ground state depends
on the phase difference between the two superconductors. Our numerical results
can explain the crossover in the conductance observed experimentally by
Buitelaar \textit{et al.} [Phys. Rev. Lett. \textbf{89}, 256 801 (2002)].Comment: Fig.2 and corresponding text have been changed; Several other small
change
Quantum energy teleportation in a quantum Hall system
We propose an experimental method for a quantum protocol termed quantum
energy teleportation (QET), which allows energy transportation to a remote
location without physical carriers. Using a quantum Hall system as a realistic
model, we discuss the physical significance of QET and estimate the order of
energy gain using reasonable experimental parameters
Spectrum and Franck-Condon factors of interacting suspended single-wall carbon nanotubes
A low energy theory of suspended carbon nanotube quantum dots in weak
tunnelling coupling with metallic leads is presented. The focus is put on the
dependence of the spectrum and the Franck-Condon factors on the geometry of the
junction including several vibronic modes. The relative size and the relative
position of the dot and its associated vibrons strongly influence the
electromechanical properties of the system. A detailed analysis of the complete
parameters space reveals different regimes: in the short vibron regime the
tunnelling of an electron into the nanotube generates a plasmon-vibron
excitation while in the long vibron regime polaron excitations dominate the
scenario. The small, position dependent Franck-Condon couplings of the small
vibron regime convert into uniform, large couplings in the long vibron regime.
Selection rules for the excitations of the different plasmon-vibron modes via
electronic tunnelling events are also derived.Comment: 23 pages, 8 figures, new version according to the published on
Quantum Phase Transition in a Multi-Level Dot
We discuss electronic transport through a lateral quantum dot close to the
singlet-triplet degeneracy in the case of a single conduction channel per lead.
By applying the Numerical Renormalization Group, we obtain rigorous results for
the linear conductance and the density of states. A new quantum phase
transition of the Kosterlitz-Thouless type is found, with an exponentially
small energy scale close to the degeneracy point. Below , the
conductance is strongly suppressed, corresponding to a universal dip in the
density of states. This explains recent transport measurements.Comment: 4 pages, 5 eps figures, published versio
Detection of topological transitions by transport through molecules and nanodevices
We analyze the phase transitions of an interacting electronic system weakly
coupled to free-electron leads by considering its zero-bias conductance. This
is expressed in terms of two effective impurity models for the cases with and
without spin degeneracy. We demonstrate using the half-filled ionic Hubbard
ring that the weight of the first conductance peak as a function of external
flux or of the difference in gate voltages between even and odd sites allows
one to identify the topological charge transition between a correlated
insulator and a band insulator.Comment: 4 pages, 5 figures, to appear in Phys. Rev. Let
Singlet-triplet transition in a lateral quantum dot
We study transport through a lateral quantum dot in the vicinity of the
singlet-triplet transition in its ground state. This transition, being sharp in
an isolated dot, is broadened to a crossover by the exchange interaction of the
dot electrons with the conduction electrons in the leads. For a generic set of
system's parameters, the linear conductance has a maximum in the crossover
region. At zero temperature and magnetic field, the maximum is the strongest.
It becomes less pronounced at finite Zeeman splitting, which leads to an
increase of the background conductance and a decrease of the conductance in the
maximum
Interference and interaction effects in multi-level quantum dots
Using renormalization group techniques, we study spectral and transport
properties of a spinless interacting quantum dot consisting of two levels
coupled to metallic reservoirs. For strong Coulomb repulsion and an applied
Aharonov-Bohm phase , we find a large direct tunnel splitting
between the levels of
the order of the level broadening . As a consequence we discover a
many-body resonance in the spectral density that can be measured via the
absorption power. Furthermore, for , we show that the system can be
tuned into an effective Anderson model with spin-dependent tunneling.Comment: 5 pages, 4 figures included, typos correcte
Determination of the phase shifts for interacting electrons connected to reservoirs
We describe a formulation to deduce the phase shifts, which determine the
ground-state properties of interacting quantum-dot systems with the inversion
symmetry, from the fixed-point eigenvalues of the numerical renormalization
group (NRG). Our approach does not assume the specific form of the Hamiltonian
nor the electron-hole symmetry, and it is applicable to a wide class of quantum
impurities connected to noninteracting leads. We apply the method to a triple
dot which is described by a three-site Hubbard chain connected to two
noninteracting leads, and calculate the dc conductance away from half-filling.
The conductance shows the typical Kondo plateaus of Unitary limit in some
regions of the gate voltages, at which the total number of electrons N_el in
the three dots is odd, i.e., N_el =1, 3 and 5. In contrast, the conductance
shows a wide minimum in the gate voltages corresponding to even number of
electrons, N_el = 2 and 4.
We also discuss the parallel conductance of the triple dot connected
transversely to four leads, and show that it can be deduced from the two phase
shifts defined in the two-lead case.Comment: 9 pages, 12 figures: Fig. 12 has been added to discuss T_
- …