81 research outputs found

    Contribution of lactobacillus casei to the recovery from chemically induced skeletal muscle damage under chronic stress

    Get PDF
    Background: Regeneration of damaged skeletal muscle requires sufficient supply of nutrients. Fully functional intestine and colon assure sufficient supply of nutrients. Gut commensal bacteria are known to support intestinal function. Previously lactobacillus treatment of elite athletes was shown to be effective in attenuating fatigue and impaired performance. We hypothesized that Lactobacillus casei (L.casei) administration may facilitate recovery of damaged skeletal muscle when the gut function is suppressed under chronic stress in which muscle regeneration is compromised. Objective: To investigate contribution of L.casei under chronic stress to the recovery of damaged skeletal muscle in young and older adult mice. Methods: L.casei was given orally at a dose of 10-8 /day for 7days to 10 weeks old (young) and 45-55 weeks old (older adult) male C57BL/6J mice. Vehicle control mice received an equivalent volume of water for 7 days. On the eighth day, cardiotoxin (CTX) was injected to gatrocnemius muscle to induce muscle damage. Both groups were assigned 2 hours repeated-restraint stress everyday (chronic stress). On days 3, 5, 7, 10, 14 and 20 after CTX injection, mice were sacrificed. Excised gastrocnemius muscle was subjected to weight measurement and immunohistochemical analyses. Results: There were significant differences in both the recovery of muscle weight and the regeneration process of gastrocnemius muscle examined immunohistochemically between control and L.casei treated young and older adult groups. Especially, the expression of developmental MHC (dMHC), a marker of premature regeneration, was positive up to 3 days in older adult groups. The delay in the recovery of muscle weight was obvious in older adult mice regardless of the treatment. However, while the expression of dMHC was prolonged up to day 7 in the vehicle control, dMHC expression was notable only up to day 3 or day 5 in the L.casei treated. Therefore, in older adult mice L.casei treatment under chronic stress may have facilitated the maturation process of regenerating skeletal muscle. Conclusion: Our results suggests that L.casei favor under chronic stress favors the recovery of skeletal muscle from muscle damage. The maintenance of gut function by L. casei treatment may have facilitated the maturation process of regenerating skeletal muscle

    Evaluation of muscle strength and its relation to exercise habits in Japanese

    Get PDF
    The aim of this study was to explore muscle strength and its relation to exercise habits in Japanese. We used data from 3,018 men and 6,881 women aged 20-69 years and not using medications in a cross-sectional study. Exercise habits and muscle strength, i.e. grip strength and leg strength, were measured. Age-related changes in muscle strength were noted. Exercise habits were found in 984 men (32.6%) and 1,664 women (24.2%). For subjects of both sexes over 50 years, grip strength was significantly decreased with age. However, the ratio of leg strength to body weight significantly decreased with age as early as 30 years in men and 40 years in women. Grip strength, leg strength and the ratio of leg strength to body weight in subjects with exercise habits were significantly higher than those without exercise habits after adjusting for age in both sexes. This standard mean value may provide a useful database for evaluating muscle strength in Japanese adult subjects.</p

    High-density Integrated Linkage Map Based on SSR Markers in Soybean

    Get PDF
    A well-saturated molecular linkage map is a prerequisite for modern plant breeding. Several genetic maps have been developed for soybean with various types of molecular markers. Simple sequence repeats (SSRs) are single-locus markers with high allelic variation and are widely applicable to different genotypes. We have now mapped 1810 SSR or sequence-tagged site markers in one or more of three recombinant inbred populations of soybean (the US cultivar ‘Jack’ × the Japanese cultivar ‘Fukuyutaka’, the Chinese cultivar ‘Peking’ × the Japanese cultivar ‘Akita’, and the Japanese cultivar ‘Misuzudaizu’ × the Chinese breeding line ‘Moshidou Gong 503’) and have aligned these markers with the 20 consensus linkage groups (LGs). The total length of the integrated linkage map was 2442.9 cM, and the average number of molecular markers was 90.5 (range of 70–114) for the 20 LGs. We examined allelic diversity for 1238 of the SSR markers among 23 soybean cultivars or lines and a wild accession. The number of alleles per locus ranged from 2 to 7, with an average of 2.8. Our high-density linkage map should facilitate ongoing and future genomic research such as analysis of quantitative trait loci and positional cloning in addition to marker-assisted selection in soybean breeding

    Fibrocyte-like cells mediate acquired resistance to anti-angiogenic therapy with bevacizumab

    Get PDF
    Bevacizumab exerts anti-angiogenic effects in cancer patients by inhibiting vascular endothelial growth factor (VEGF). However, its use is still limited due to the development of resistance to the treatment. Such resistance can be regulated by various factors, although the underlying mechanisms remain incompletely understood. Here we show that bone marrow-derived fibrocyte-like cells, defined as alpha-1 type I collagen-positive and CXCR4-positive cells, contribute to the acquired resistance to bevacizumab. In mouse models of malignant pleural mesothelioma and lung cancer, fibrocyte-like cells mediate the resistance to bevacizumab as the main producer of fibroblast growth factor 2. In clinical specimens of lung cancer, the number of fibrocyte-like cells is significantly increased in bevacizumab-treated tumours, and correlates with the number of treatment cycles, as well as CD31-positive vessels. Our results identify fibrocyte-like cells as a promising cell biomarker and a potential therapeutic target to overcome resistance to anti-VEGF therapy

    How much locomotive activity is needed for an active physical activity level: analysis of total step counts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although physical activity recommendations for public health have focused on locomotive activity such as walking and running, it is uncertain how much these activities contribute to overall physical activity level (PAL). The purpose of the present study was to determine the contribution of locomotive activity to PAL using total step counts measured in a calorimeter study.</p> <p>Methods</p> <p>PAL, calculated as total energy expenditure divided by basal metabolic rate, was evaluated in 11 adult men using three different conditions for 24-hour human calorimeter measurements: a low-activity day (L-day) targeted at a low active level of PAL (1.45), and a high-frequency moderate activity day (M-day) or a high-frequency vigorous activity day (V-day) targeted at an active level of PAL (1.75). These subjects were permitted only light activities except prescribed activities. In a separate group of 41 adults, free-living PAL was evaluated using doubly-labeled water (DLW). In both experiments, step counts per day were also measured using an accelerometer.</p> <p>Results</p> <p>In the human calorimeter study, PAL and step counts were 1.42 ± 0.10 and 8,973 ± 543 steps/d (L-day), 1.82 ± 0.14 and 29,588 ± 1,126 steps/d (M-day), and 1.74 ± 0.15 and 23,755 ± 1,038 steps/d (V-day), respectively. In the DLW study, PAL and step counts were 1.73 ± 0.15 and 10,022 ± 2,605 steps/d, and there was no significant relationship between PAL and daily step counts.</p> <p>Conclusions</p> <p>These results indicate that an enormous number of steps are needed for an active level of PAL if individuals extend physical activity-induced energy expenditure by only locomotive activity. Therefore, non-locomotive activity such as household activity should also play a significant role in increasing PAL under free-living conditions.</p

    A Computational Mechanism for Unified Gain and Timing Control in the Cerebellum

    Get PDF
    Precise gain and timing control is the goal of cerebellar motor learning. Because the basic neural circuitry of the cerebellum is homogeneous throughout the cerebellar cortex, a single computational mechanism may be used for simultaneous gain and timing control. Although many computational models of the cerebellum have been proposed for either gain or timing control, few models have aimed to unify them. In this paper, we hypothesize that gain and timing control can be unified by learning of the complete waveform of the desired movement profile instructed by climbing fiber signals. To justify our hypothesis, we adopted a large-scale spiking network model of the cerebellum, which was originally developed for cerebellar timing mechanisms to explain the experimental data of Pavlovian delay eyeblink conditioning, to the gain adaptation of optokinetic response (OKR) eye movements. By conducting large-scale computer simulations, we could reproduce some features of OKR adaptation, such as the learning-related change of simple spike firing of model Purkinje cells and vestibular nuclear neurons, simulated gain increase, and frequency-dependent gain increase. These results suggest that the cerebellum may use a single computational mechanism to control gain and timing simultaneously

    Convergent evolution of SARS-CoV-2 Omicron subvariants leading to the emergence of BQ.1.1 variant

    Get PDF
    In late 2022, various Omicron subvariants emerged and cocirculated worldwide. These variants convergently acquired amino acid substitutions at critical residues in the spike protein, including residues R346, K444, L452, N460, and F486. Here, we characterize the convergent evolution of Omicron subvariants and the properties of one recent lineage of concern, BQ.1.1. Our phylogenetic analysis suggests that these five substitutions are recurrently acquired, particularly in younger Omicron lineages. Epidemic dynamics modelling suggests that the five substitutions increase viral fitness, and a large proportion of the fitness variation within Omicron lineages can be explained by these substitutions. Compared to BA.5, BQ.1.1 evades breakthrough BA.2 and BA.5 infection sera more efficiently, as demonstrated by neutralization assays. The pathogenicity of BQ.1.1 in hamsters is lower than that of BA.5. Our multiscale investigations illuminate the evolutionary rules governing the convergent evolution for known Omicron lineages as of 2022

    Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants

    Get PDF
    In late 2022, SARS-CoV-2 Omicron subvariants have become highly diversified, and XBB is spreading rapidly around the world. Our phylogenetic analyses suggested that XBB emerged through the recombination of two cocirculating BA.2 lineages, BJ.1 and BM.1.1.1 (a progeny of BA.2.75), during the summer of 2022. XBB.1 is the variant most profoundly resistant to BA.2/5 breakthrough infection sera to date and is more fusogenic than BA.2.75. The recombination breakpoint is located in the receptor-binding domain of spike, and each region of the recombinant spike confers immune evasion and increases fusogenicity. We further provide the structural basis for the interaction between XBB.1 spike and human ACE2. Finally, the intrinsic pathogenicity of XBB.1 in male hamsters is comparable to or even lower than that of BA.2.75. Our multiscale investigation provides evidence suggesting that XBB is the first observed SARS-CoV-2 variant to increase its fitness through recombination rather than substitutions
    corecore