689 research outputs found
Primordial Density Fluctuations in a Dual Supergravity Cosmology
We analyse the spectrum of energy density fluctuations of a dual supergravity
model where the dilaton and the moduli are stabilized and sucessful inflation
is achieved inside domain walls that separate different vacua of the theory.
Constraints on the parameters of the superpotential are derived from the
amplitude of the primordial energy density fluctuations as inferred from COBE
and it is shown that the scale dependence of the tensor perturbations nearly
vanishes.Comment: 13 pages, Latex, 3 figures (uses epsf.sty
Anomalous Flux Flow Resistivity in Two Gap Superconductor MgB_2
The flux flow resistivity associated with purely viscous motion of vortices
in high-quality MgB_2 was measured by microwave surface impedance. Flux flow
resistivity exhibits unusual field dependence with strong enhancement at low
field, which is markedly different to conventional s-wave superconductors. A
crossover field which separates two distinct flux flow regimes having different
flux flow resistivity slopes was clearly observed in H//ab-plane. The unusual
H-dependence indicates that two very differently sized superconducting gaps in
MgB_2 manifest in the vortex dynamics and almost equally contribute to energy
dissipation. The carrier scattering rate in two different bands is also
discussed with the present results, compared to heat capacity and thermal
conductivity results.Comment: 4 pages, 3figure
Metastable Vacua in Superconformal SQCD-like Theories
We study dynamical supersymmetry breaking in vector-like superconformal N=1
gauge theories. We find appropriate deformations of the superpotential to
overcome the problem of the instability of the non supersymmetric vacuum. The
request for long lifetime translates into constraints on the physical couplings
which in this regime can be controlled through efficient RG analysis.Comment: 17 pages, 7 figures, JHEP3.cl
Modulation of MUC1 mucin as an escape mechanism of breast cancer cells from autologous cytotoxic T-lymphocytes
MUC1 mucin is known to serve as a target molecule in the killing of breast cancer cells by cytotoxic T-lymphocytes (CTLs). We searched for a possible mechanism allowing tumour cells to escape from autologous CTLs. When the killing of breast cancer cells by autologous lymphocytes was examined in 26 patients with breast cancer, significant tumour cell lysis was observed in 8 patients, whereas virtually no autologous tumour cell lysis was detected in as many as 18 patients. In the patients who showed negligible tumour cell lysis, the autologous tumour cells expressed MUC1-related antigenic epitopes much more weakly than the tumour cells in the patients who exhibited strong cytotoxicity (significant statistically at P< 0.0005–0.0045), suggesting that the unresponsiveness of cancer cells to CTLs observed in these patients was mainly due to loss of MUC1 expression or modulation of its antigenicity. A breast cancer cell line, NZK-1, established from one of the cytotoxicity-negative patients, did not express MUC1 and was resistant to killing by CTLs, while control breast cancer cell lines expressing MUC-1 were readily killed by CTLs. Transfection of NZK-1 cells with MUC1 cDNA induced significant lysis by autologous T-lymphocytes. These results supported the importance of MUC1 mucin in autologous anti-tumour immunity, but suggested that the major escape mechanism of tumour cells from autologous T-lymphocytes is the loss and/or modulation of MUC1 antigenicity on tumour cells, which would limit the effectiveness of possible immunotherapy designed to target the MUC1 mucin. © 2001 Cancer Research Campaign http://www.bjcancer.co
Hofstadter-type energy spectra in lateral superlattices defined by periodic magnetic and electrostatic fields
We calculate the energy spectrum of an electron moving in a two-dimensional
lattice which is defined by an electric potential and an applied perpendicular
magnetic field modulated by a periodic surface magnetization. The spatial
direction of this magnetization introduces complex phases into the Fourier
coefficients of the magnetic field. We investigate the effect of the relative
phases between electric and magnetic modulation on band width and internal
structure of the Landau levels.Comment: 5 LaTeX pages with one gif figure to appear in Phys. Rev.
Variation and process of life history evolution in insular dwarfism as revealed by a natural experiment
Islands are a classic focus for evolutionary studies. One topic of great interest has been the evolution of “dwarfs,” significantly smaller island mammals relative to their continental counterparts. Although a consensus has been achieved regarding the multivariate ecological causes behind changes in body size, the processes involved remain largely unexplored. Life history variables, including age at first reproduction, growth rate, and longevity, are likely to be key to understanding the process of insular dwarfism. The Japanese archipelago, with its numerous islands, offers a unique natural experiment for the evolution of different sizes within the same group of organisms; namely, deer. Thus, we investigated eight deer populations with a total number of 52 individuals exhibiting body size variation, both extant and fossil, to clarify the effect of insularity on life history traits. We applied several methods to both extant and extinct populations to resolve life history changes among these deer populations. Skeletochronology, using lines of arrested growth formed in long bones (femur and tibia), successfully reconstructed body growth curves and revealed a gradual change in growth trajectories reflecting the degree of insularity. Slower growth rates with prolonged growth periods in more isolated deer populations were revealed. An extensive examination of bone microstructure further corroborated this finding, with much slower growth and later somatic maturity evident in fossil insular deer isolated for more than 1.5 Myr. Finally, mortality patterns assessed by demographic analysis revealed variation among deer populations, with a life history of insular populations shifting toward the “slow life.”Hayashi S., Kubo M.O., Sánchez-Villagra M.R., et al. Variation and process of life history evolution in insular dwarfism as revealed by a natural experiment. Frontiers in Earth Science 11, 1095903 (2023); https://doi.org/10.3389/feart.2023.1095903
Anisotropic s-wave superconductivity in MgB_2
It has recently been observed that MgB_2 is a superconductor with a high
transition temperature. Here we propose a model of anisotropic s-wave
superconductivity which consistently describes the observed properties of this
compound, including the thermodynamic and optical response in sintered MgB_2
wires. We also determine the shape of the quasiparticle density of states and
the anisotropy of the upper critical field and the superfluid density which
should be detectable once single-crystal samples become available.Comment: RevTex, 10 pages with 4 eps figure
Variation and process of life history evolution in insular dwarfism as revealed by a natural experiment
Islands are a classic focus for evolutionary studies. One topic of great interest has been the evolution of “dwarfs,” significantly smaller island mammals relative to their continental counterparts. Although a consensus has been achieved regarding the multivariate ecological causes behind changes in body size, the processes involved remain largely unexplored. Life history variables, including age at first reproduction, growth rate, and longevity, are likely to be key to understanding the process of insular dwarfism. The Japanese archipelago, with its numerous islands, offers a unique natural experiment for the evolution of different sizes within the same group of organisms; namely, deer. Thus, we investigated eight deer populations with a total number of 52 individuals exhibiting body size variation, both extant and fossil, to clarify the effect of insularity on life history traits. We applied several methods to both extant and extinct populations to resolve life history changes among these deer populations. Skeletochronology, using lines of arrested growth formed in long bones (femur and tibia), successfully reconstructed body growth curves and revealed a gradual change in growth trajectories reflecting the degree of insularity. Slower growth rates with prolonged growth periods in more isolated deer populations were revealed. An extensive examination of bone microstructure further corroborated this finding, with much slower growth and later somatic maturity evident in fossil insular deer isolated for more than 1.5 Myr. Finally, mortality patterns assessed by demographic analysis revealed variation among deer populations, with a life history of insular populations shifting toward the “slow life.
- …