689 research outputs found

    Primordial Density Fluctuations in a Dual Supergravity Cosmology

    Get PDF
    We analyse the spectrum of energy density fluctuations of a dual supergravity model where the dilaton and the moduli are stabilized and sucessful inflation is achieved inside domain walls that separate different vacua of the theory. Constraints on the parameters of the superpotential are derived from the amplitude of the primordial energy density fluctuations as inferred from COBE and it is shown that the scale dependence of the tensor perturbations nearly vanishes.Comment: 13 pages, Latex, 3 figures (uses epsf.sty

    Anomalous Flux Flow Resistivity in Two Gap Superconductor MgB_2

    Full text link
    The flux flow resistivity associated with purely viscous motion of vortices in high-quality MgB_2 was measured by microwave surface impedance. Flux flow resistivity exhibits unusual field dependence with strong enhancement at low field, which is markedly different to conventional s-wave superconductors. A crossover field which separates two distinct flux flow regimes having different flux flow resistivity slopes was clearly observed in H//ab-plane. The unusual H-dependence indicates that two very differently sized superconducting gaps in MgB_2 manifest in the vortex dynamics and almost equally contribute to energy dissipation. The carrier scattering rate in two different bands is also discussed with the present results, compared to heat capacity and thermal conductivity results.Comment: 4 pages, 3figure

    Metastable Vacua in Superconformal SQCD-like Theories

    Get PDF
    We study dynamical supersymmetry breaking in vector-like superconformal N=1 gauge theories. We find appropriate deformations of the superpotential to overcome the problem of the instability of the non supersymmetric vacuum. The request for long lifetime translates into constraints on the physical couplings which in this regime can be controlled through efficient RG analysis.Comment: 17 pages, 7 figures, JHEP3.cl

    Modulation of MUC1 mucin as an escape mechanism of breast cancer cells from autologous cytotoxic T-lymphocytes

    Get PDF
    MUC1 mucin is known to serve as a target molecule in the killing of breast cancer cells by cytotoxic T-lymphocytes (CTLs). We searched for a possible mechanism allowing tumour cells to escape from autologous CTLs. When the killing of breast cancer cells by autologous lymphocytes was examined in 26 patients with breast cancer, significant tumour cell lysis was observed in 8 patients, whereas virtually no autologous tumour cell lysis was detected in as many as 18 patients. In the patients who showed negligible tumour cell lysis, the autologous tumour cells expressed MUC1-related antigenic epitopes much more weakly than the tumour cells in the patients who exhibited strong cytotoxicity (significant statistically at P< 0.0005–0.0045), suggesting that the unresponsiveness of cancer cells to CTLs observed in these patients was mainly due to loss of MUC1 expression or modulation of its antigenicity. A breast cancer cell line, NZK-1, established from one of the cytotoxicity-negative patients, did not express MUC1 and was resistant to killing by CTLs, while control breast cancer cell lines expressing MUC-1 were readily killed by CTLs. Transfection of NZK-1 cells with MUC1 cDNA induced significant lysis by autologous T-lymphocytes. These results supported the importance of MUC1 mucin in autologous anti-tumour immunity, but suggested that the major escape mechanism of tumour cells from autologous T-lymphocytes is the loss and/or modulation of MUC1 antigenicity on tumour cells, which would limit the effectiveness of possible immunotherapy designed to target the MUC1 mucin. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Hofstadter-type energy spectra in lateral superlattices defined by periodic magnetic and electrostatic fields

    Full text link
    We calculate the energy spectrum of an electron moving in a two-dimensional lattice which is defined by an electric potential and an applied perpendicular magnetic field modulated by a periodic surface magnetization. The spatial direction of this magnetization introduces complex phases into the Fourier coefficients of the magnetic field. We investigate the effect of the relative phases between electric and magnetic modulation on band width and internal structure of the Landau levels.Comment: 5 LaTeX pages with one gif figure to appear in Phys. Rev.

    Variation and process of life history evolution in insular dwarfism as revealed by a natural experiment

    Get PDF
    Islands are a classic focus for evolutionary studies. One topic of great interest has been the evolution of “dwarfs,” significantly smaller island mammals relative to their continental counterparts. Although a consensus has been achieved regarding the multivariate ecological causes behind changes in body size, the processes involved remain largely unexplored. Life history variables, including age at first reproduction, growth rate, and longevity, are likely to be key to understanding the process of insular dwarfism. The Japanese archipelago, with its numerous islands, offers a unique natural experiment for the evolution of different sizes within the same group of organisms; namely, deer. Thus, we investigated eight deer populations with a total number of 52 individuals exhibiting body size variation, both extant and fossil, to clarify the effect of insularity on life history traits. We applied several methods to both extant and extinct populations to resolve life history changes among these deer populations. Skeletochronology, using lines of arrested growth formed in long bones (femur and tibia), successfully reconstructed body growth curves and revealed a gradual change in growth trajectories reflecting the degree of insularity. Slower growth rates with prolonged growth periods in more isolated deer populations were revealed. An extensive examination of bone microstructure further corroborated this finding, with much slower growth and later somatic maturity evident in fossil insular deer isolated for more than 1.5 Myr. Finally, mortality patterns assessed by demographic analysis revealed variation among deer populations, with a life history of insular populations shifting toward the “slow life.”Hayashi S., Kubo M.O., Sánchez-Villagra M.R., et al. Variation and process of life history evolution in insular dwarfism as revealed by a natural experiment. Frontiers in Earth Science 11, 1095903 (2023); https://doi.org/10.3389/feart.2023.1095903

    Anisotropic s-wave superconductivity in MgB_2

    Full text link
    It has recently been observed that MgB_2 is a superconductor with a high transition temperature. Here we propose a model of anisotropic s-wave superconductivity which consistently describes the observed properties of this compound, including the thermodynamic and optical response in sintered MgB_2 wires. We also determine the shape of the quasiparticle density of states and the anisotropy of the upper critical field and the superfluid density which should be detectable once single-crystal samples become available.Comment: RevTex, 10 pages with 4 eps figure

    Variation and process of life history evolution in insular dwarfism as revealed by a natural experiment

    Get PDF
    Islands are a classic focus for evolutionary studies. One topic of great interest has been the evolution of “dwarfs,” significantly smaller island mammals relative to their continental counterparts. Although a consensus has been achieved regarding the multivariate ecological causes behind changes in body size, the processes involved remain largely unexplored. Life history variables, including age at first reproduction, growth rate, and longevity, are likely to be key to understanding the process of insular dwarfism. The Japanese archipelago, with its numerous islands, offers a unique natural experiment for the evolution of different sizes within the same group of organisms; namely, deer. Thus, we investigated eight deer populations with a total number of 52 individuals exhibiting body size variation, both extant and fossil, to clarify the effect of insularity on life history traits. We applied several methods to both extant and extinct populations to resolve life history changes among these deer populations. Skeletochronology, using lines of arrested growth formed in long bones (femur and tibia), successfully reconstructed body growth curves and revealed a gradual change in growth trajectories reflecting the degree of insularity. Slower growth rates with prolonged growth periods in more isolated deer populations were revealed. An extensive examination of bone microstructure further corroborated this finding, with much slower growth and later somatic maturity evident in fossil insular deer isolated for more than 1.5 Myr. Finally, mortality patterns assessed by demographic analysis revealed variation among deer populations, with a life history of insular populations shifting toward the “slow life.
    corecore