11 research outputs found

    Inter- and intrabreed diversity of the major histocompatibility complex (MHC) in primitive and draft horse breeds.

    No full text
    BACKGROUND:Polymorphism of major histocompatibility complex (MHC) genes ensures effective immune responses against a wide array of pathogens. However, artificial selection, as performed in the case of domestic animals, may influence MHC diversity. Here, we investigate and compare the MHC diversity of three populations of horses, for which different breeding policies were applied, to evaluate the impact of artificial selection and the environment on MHC polymorphism. METHODS:Samples of DNA were taken from 100 Polish draft horses, 38 stabled Konik Polski horses and 32 semiferal Konik Polski horses. MHC alleles and haplotype diversity within and between these populations of horses was estimated from 11 MHC microsatellite loci. RESULTS:MHC diversity measured based on allelic richness, observed heterozygosity, expected heterozygosity and polymorphism content was similar across the MHC microsatellite loci in all three populations. The highest expected heterozygosity was detected in semiferal primitive horses (He = 0.74), while the lowest was calculated for draft horses (He = 0.65). In total, 203 haplotypes were determined (111 in Polish draft horses, 43 in semiferal Konik Polski horses and 49 in stabled Konik Polski horses), and four haplotypes were shared between the two populations of Koniks. None of these haplotypes were present in any of the previously investigated horse breeds. Intra-MHC recombination events were detected in all three populations. However, the population of semiferal Konik horses showed the highest recombination frequency among the three horse populations. In addition, three recombination events were detected. CONCLUSIONS:These results showed that despite the different breeding policies, the MHC allele and haplotype diversity was similarly high in all three horse populations. Nevertheless, the proportion of new haplotypes in the offspring was the highest in semiferal Konik Polski horses, which indicates the influence of the environment on MHC diversity in horses. Thus, we speculate that the genetic makeup of the domestic horse MHC might be more strongly influenced by the environment than by artificial selection. Moreover, intra-MHC conversion, insertion, and deletion and intra-MHC recombination may be proposed as mechanisms underlying the generation of new MHC haplotypes in horses

    Diverse Effects of Phytoestrogens on the Reproductive Performance: Cow as a Model

    Get PDF
    Phytoestrogens, polyphenolic compounds derived from plants, are more and more common constituents of human and animal diets. In most of the cases, these chemicals are much less potent than endogenous estrogens but exert their biological effects via similar mechanisms of action. The most common source of phytoestrogen exposure to humans as well as ruminants is soybean-derived foods that are rich in the isoflavones genistein and daidzein being metabolized in the digestive tract to even more potent metabolites—para-ethyl-phenol and equol. Phytoestrogens have recently come into considerable interest due to the increasing information on their adverse effects in human and animal reproduction, increasing the number of people substituting animal proteins with plant-derived proteins. Finally, the soybean becomes the main source of protein in animal fodder because of an absolute prohibition of bone meal use for animal feeding in 1995 in Europe. The review describes how exposure of soybean-derived phytoestrogens can have adverse effects on reproductive performance in female adults

    Transcriptome Profiling of the Retained Fetal Membranes—An Insight in the Possible Pathogenesis of the Disease

    No full text
    Retained fetal membranes (RFM) is one of the most common post-partum diseases of a complex etiology. Moreover, its pathogenesis is still not elucidated. Detailed transcriptomic analysis of physiological and retained placenta may bring profound insight in the pathogenesis of the disease. The aim of the study was to compare the transcriptome of the retained and physiologically released placenta as well as biological pathways and processes in order to determine the possible pathogenesis of the disease. Samples of the endometrium and the allantochorion were taken within 2 h after parturition from control mares (n = 3) and mares with RFM (n = 3). RNA sequencing was performed with the use of all samples and mRNA expression of chosen genes was validated with Real Time PCR. Analysis of RNA-seq identified 487 differentially expressed genes in the allantochorion and 261 in the endometrium of control and RFM mares (p BGN, TIMP1, DRB, CD3E, C3, FCN3, CASP3, BCL2L1. Gene ontology analysis showed possible processes which were altered in RFM that are apoptosis, inflammatory-related processes, and extracellular matrix metabolism and might be involved in the pathogenesis of RFM. This is the first report on the transcriptome of RFM and physiologically released placenta in mares

    Transcriptome Profiling of the Retained Fetal Membranes—An Insight in the Possible Pathogenesis of the Disease

    No full text
    Retained fetal membranes (RFM) is one of the most common post-partum diseases of a complex etiology. Moreover, its pathogenesis is still not elucidated. Detailed transcriptomic analysis of physiological and retained placenta may bring profound insight in the pathogenesis of the disease. The aim of the study was to compare the transcriptome of the retained and physiologically released placenta as well as biological pathways and processes in order to determine the possible pathogenesis of the disease. Samples of the endometrium and the allantochorion were taken within 2 h after parturition from control mares (n = 3) and mares with RFM (n = 3). RNA sequencing was performed with the use of all samples and mRNA expression of chosen genes was validated with Real Time PCR. Analysis of RNA-seq identified 487 differentially expressed genes in the allantochorion and 261 in the endometrium of control and RFM mares (p < 0.0001). Within genes that may be important in the release of fetal membranes and were differentially expressed, our report pinpointed BGN, TIMP1, DRB, CD3E, C3, FCN3, CASP3, BCL2L1. Gene ontology analysis showed possible processes which were altered in RFM that are apoptosis, inflammatory-related processes, and extracellular matrix metabolism and might be involved in the pathogenesis of RFM. This is the first report on the transcriptome of RFM and physiologically released placenta in mares

    Human-controlled reproductive experience may contribute to incestuous behavior observed in reintroduced semi-feral stallions (Equuscaballus).

    No full text
    From PubMed via Jisc Publications RouterHistory: received 2021-06-18, revised 2021-11-10, accepted 2021-12-15Publication status: aheadofprintEquine reproductive behavior is affected by many factors, some remaining poorly understood. This study tested the hypothesis that a period of captivity during the juvenile period and human-controlled reproduction may potentially be involved in the disruption of the development of incestuous mating avoidance behavior in sanctuary-reintroduced male Konik polski horses. Between 1986 and 2000, cases of incestuous behavior in harem stallions born and reared until weaning in the sanctuary were studied. Eight males lived in the sanctuary's feral herd for the rest of their lives (the non-captive group; nC). They gained their own harem of mares without human intervention (no human-controlled reproductive activity, nHC). Another five stallions were removed as weanlings, reared in captivity and then reintroduced as adults (captive, C). Three of these C stallions were used as in-hand breeding stallions, one as a "teaser" (human-controlled reproductive activity, HC) and one was not used for reproduction in captivity (nHC). Reproductive records for 46 mares, daughters of all 13 harem stallions, were scrutinized and cases of incestuous breeding were recorded by interrogation of foal parentage records. C stallions failed to expel more daughters than nC stallions (33% vs. 18%, P = 0.045), and mated with significantly more of them (28% vs. 11%, P = 0.025). Interestingly, HC stallions expelled fewer (60%) and successfully mated with more (33%) daughters that nHC stallions (84% expelled, P = 0.013, and 10% successful mating with daughters, P = 0.010). All HC stallions bred incestuously at least once. We propose that human intervention during a critical period of development of social and reproductive behavior in young stallions, by enforced separation from their natal herd and in-hand breeding, may contribute to their later aberrant behavior and disruption of inbreeding avoidance mechanisms in these stallions. The previous occurrence of human-controlled breeding may be one of the factors promoting incestuous behavior of stallions in natural conditions. The uninterrupted presence of stallions in their harems and herd member recognition may also play important roles in inbreeding avoidance in horses. [Abstract copyright: Copyright © 2021 Elsevier Inc. All rights reserved.

    Populations of NK Cells and Regulatory T Cells in the Endometrium of Cycling Mares—A Preliminary Study

    No full text
    Endometrial immune cells are essential to support uterine functions across the estrous cycle and in preparation for pregnancy. It has been acknowledged that changes in phenotype and/or numbers of lymphocytes, such as regulatory T cells (Tregs) and NK cells, might result in lower fertility in women and mice. Little is known about equine endometrial immune cells across the estrous cycle. Here, we compared the populations of endometrial Tregs and NK cells in estrus and diestrus in mares. Endometrial biopsy and blood samples were taken in estrus and diestrus from 11 mares ages 4–12 years. Flow cytometry with anti-CD4, -CD25 and -FOXP3 and anti-NKp46 and -CD3 antibodies was used to determine the populations of Tregs and NK cells, respectively. The concentration of progesterone was measured with chemiluminescence immunoassay. The results were analyzed with paired Student t tests. The mean percentage of endometrial CD4+FOXP3+ Tregs was 13.7 ± 6.2% in diestrus and 14.5 ± 5.9% in estrus, while the mean percentage of endometrial CD4+FOXP3+CD25+ Tregs changed from 3.6 ± 2.1% in diestrus to 2 ± 2% in estrus (p = 0.0947). The mean proportion of CD3−NKp46+ lymphocytes in the endometrium was not significantly different, with 6 ± 1% in estrus and 6.5 ± 1.4% in diestrus. There was a large variation in the percentage of NK cells between mares of 2.1–12.7%. This study showed, for the first time, the presence of CD4+FOXP3+CD25+ Tregs and CD3−NKp46+ NK cells in the endometrium of non-pregnant cycling mares. The percentage of Tregs, and to a greater extent NK cells, showed large fluctuations between mares. Both Tregs and NK cells might be important for the preparation of the endometrium for semen deposition and pregnancy; however, further research is required

    Lysophosphatidic Acid (LPA) Signaling in Human and Ruminant Reproductive Tract

    No full text
    Lysophosphatidic acid (LPA) through activating its G protein-coupled receptors (LPAR 1–6) exerts diverse cellular effects that in turn influence several physiological processes including reproductive function of the female. Studies in various species of animals and also in humans have identified important roles for the receptor-mediated LPA signaling in multiple aspects of human and animal reproductive tract function. These aspects range from ovarian and uterine function, estrous cycle regulation, early embryo development, embryo implantation, decidualization to pregnancy maintenance and parturition. LPA signaling can also have pathological consequences, influencing aspects of endometriosis and reproductive tissue associated tumors. The review describes recent progress in LPA signaling research relevant to human and ruminant reproduction, pointing at the cow as a relevant model to study LPA influence on the human reproductive performance

    The role of vitamin D in reproductive dysfunction in women – a systematic review

    No full text
    Vitamin D is essential for the proper functioning of the human body. There is also evidence of its strong association with fertility problems in women. This review aims to evaluate the relationship between vitamin D and diseases affecting women’s fertility (polycystic ovarian syndrome (PCOS), uterine leiomyomas and endometriosis), and in vitro fertilization (IVF) outcome. A systematic review of the literature was conducted in Scopus and PubMed for relevant English language publications since 1989. Vitamin D influences the functioning of the reproductive system in women and has been associated with PCOS, uterine leiomyomas, endometriosis and in vitro fertilization (IVF) outcome. However, further studies on larger groups of patients are needed to establish what role vitamin D plays in the treatment of female infertility
    corecore