28 research outputs found

    Analysis of growth-phase regulated genes in Streptococcus agalactiae by global transcript profiling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacteria employ multiple mechanisms to control gene expression and react to their constantly changing environment. Bacterial growth in rich laboratory medium is a dynamic process in which bacteria utilize nutrients from simple to complex and change physical properties of the medium, as pH, during the process. To determine which genes are differentially expressed throughout growth from mid log to stationary phase, we performed global transcript analysis.</p> <p>Results</p> <p>The <it>S. agalactiae </it>transcriptome is dynamic in response to growth conditions. Several genes and regulons involved in virulence factor production and utilization of alternate carbon sources were differentially expressed throughout growth.</p> <p>Conclusion</p> <p>These data provide new information about the magnitude of plasticity of the <it>S. agalactiae </it>transcriptome and its adaptive response to changing environmental conditions. The resulting information will greatly assist investigators studying <it>S. agalactiae </it>physiology and pathogenesis.</p

    Identification of an Unusual Pattern of Global Gene Expression in Group B Streptococcus Grown in Human Blood

    Get PDF
    Because passage of the bacterium to blood is a crucial step in the pathogenesis of many group B Streptococcus (GBS) invasive infections, we recently conducted a whole-genome transcriptome analysis during GBS incubation ex vivo with human blood. In the current work, we sought to analyze in detail the difference in GBS gene expression that occurred in one blood sample (donor A) relative to other blood samples. We incubated GBS strain NEM316 with fresh heparinized human blood obtained from healthy volunteers, and analyzed GBS genome expression and cytokine production. Principal component analysis identified extensive clustering of the transcriptome data among all samples at time 0. In striking contrast, the whole bacterial gene expression in the donor A blood sample was significantly different from the gene expression in all other blood samples studied, both after 30 and 90 min of incubation. More genes were up-regulated in donor A blood relative to the other samples, at 30 min and 90 min. Furthermore, there was significant variation in transcript levels between donor A blood and other blood samples. Notably, genes with the highest transcript levels in donor A blood were those involved in carbohydrate metabolism. We also discovered an unusual production of proinflammatory and immunomodulatory cytokines: MIF, tPAI-1 and IL-1β were produced at higher levels in donor A blood relative to the other blood samples, whereas GM-CSF, TNF-α, IFN-γ, IL-7 and IL-10 remained at lower levels in donor A blood. Potential reasons for our observations are that the immune response of donor A significantly influenced the bacterial transcriptome, or both GBS gene expression and immune response were influenced by the metabolic status of donor A

    Lateral gene transfer of streptococcal ICE element RD2 (region of difference 2) encoding secreted proteins

    Get PDF
    Background: The genome of serotype M28 group A Streptococcus (GAS) strain MGAS6180 contains a novel genetic element named Region of Difference 2 (RD2) that encodes seven putative secreted extracellular proteins. RD2 is present in all serotype M28 strains and strains of several other GAS serotypes associated with female urogenital infections. We show here that the GAS RD2 element is present in strain MGAS6180 both as an integrative chromosomal form and a circular extrachromosomal element. RD2-like regions were identified in publicly available genome sequences of strains representing three of the five major group B streptococcal serotypes causing human disease. Ten RD2-encoded proteins have significant similarity to proteins involved in conjugative transfer of Streptococcus thermophilus integrative chromosomal elements (ICEs). Results: We transferred RD2 from GAS strain MGAS6180 (serotype M28) to serotype M1 and M4 GAS strains by filter mating. The copy number of the RD2 element was rapidly and significantly increased following treatment of strain MGAS6180 with mitomycin C, a DNA damaging agent. Using a PCR-based method, we also identified RD2-like regions in multiple group C and G strains of Streptococcus dysgalactiae subsp.equisimilis cultured from invasive human infections. Conclusions: Taken together, the data indicate that the RD2 element has disseminated by lateral gene transfer to genetically diverse strains of human-pathogenic streptococci

    Adaptation of Group A Streptococcus to Human Amniotic Fluid

    Get PDF
    BACKGROUND: For more than 100 years, group A Streptococcus has been identified as a cause of severe and, in many cases, fatal infections of the female urogenital tract. Due to advances in hospital hygiene and the advent of antibiotics, this type of infection has been virtually eradicated. However, within the last three decades there has been an increase in severe intra- and post-partum infections attributed to GAS. METHODOLOGY: We hypothesized that GAS alters its transcriptome to survive in human amniotic fluid (AF) and cause disease. To identify genes that were up or down regulated in response to growth in AF, GAS was grown in human AF or standard laboratory media (THY) and samples for expression microarray analysis were collected during mid-logarithmic, late-logarithmic, and stationary growth phases. Microarray analysis was performed using a custom Affymetrix chip and normalized hybridization values derived from three biological replicates were collected at each growth point. Ratios of AF/THY above a 2-fold change and P-value <0.05 were considered significant. PRINCIPAL FINDINGS: The majority of changes in the GAS transcriptome involved down regulation of multiple adhesins and virulence factors and activation of the stress response. We observed significant changes in genes involved in the arginine deiminase pathway and in the nucleotide de novo synthesis pathway. CONCLUSIONS/SIGNIFICANCE: Our work provides new insight into how pathogenic bacteria respond to their environment to establish infection and cause disease

    Characterization of transcription within sdr region of Staphylococcus aureus

    Get PDF
    Staphylococcus aureus is an opportunistic pathogen responsible for various infections in humans and animals. It causes localized and systemic infections, such as abscesses, impetigo, cellulitis, sepsis, endocarditis, bone infections, and meningitis. S. aureus virulence factors responsible for the initial contact with host cells (MSCRAMMs—microbial surface components recognizing adhesive matrix molecules) include three Sdr proteins. The presence of particular sdr genes is correlated with putative tissue specificity. The transcriptional organization of the sdr region remains unclear. We tested expression of the sdrC, sdrD, or sdrE genes in various in vitro conditions, as well as after contact with human blood. In this work, we present data suggesting a separation of the sdr region into three transcriptional units, based on their differential reactions to the environment. Differential reaction of the sdrD transcript to environmental conditions and blood suggests dissimilar functions of the sdr genes. SdrE has been previously proposed to play role in bone infections, whilst our results can indicate that sdrD plays a role in the interactions between the pathogen and human immune system, serum or specifically reacts to nutrients/other factors present in human blood

    Studies of Streptococcus anginosus Virulence in Dictyostelium discoideum and Galleria mellonella Models

    Get PDF
    For many years, Streptococcus anginosus has been considered a commensal colonizing the oral cavity, as well as the gastrointestinal and genitourinary tracts. However, recent epidemiological and clinical data designate this bacterium as an emerging opportunistic pathogen. Despite the reported pathogenicity of S. anginosus, the molecular mechanism underpinning its virulence is poorly described. Therefore, our goal was to develop and optimize efficient and simple infection models that can be applied to examine the virulence of S. anginosus and to study host-pathogen interactions. Using 23 S. anginosus isolates collected from different infections, including severe and superficial infections, as well as an attenuated strain devoid of CppA, we demonstrate for the first time that Dictyostelium discoideum is a suitable model for initial, fast, and large-scale screening of virulence. Furthermore, we found that another nonvertebrate animal model, Galleria mellonella, can be used to study the pathogenesis of S. anginosus infection, with an emphasis on the interactions between the pathogen and host innate immunity. Examining the profile of immune defense genes, including antimicrobial peptides, opsonins, regulators of nodulation, and inhibitors of proteases, by quantitative PCR (qPCR) we identified different immune response profiles depending on the S. anginosus strain. Using these models, we show that S. anginosus is resistant to the bactericidal activity of phagocytes, a phenomenon confirmed using human neutrophils. Notably, since we found that the data from these models corresponded to the clinical severity of infection, we propose their further application to studies of the virulence of S. anginosus

    Extensive Adaptive Changes Occur in the Transcriptome of Streptococcus agalactiae (Group B Streptococcus) in Response to Incubation with Human Blood

    Get PDF
    To enhance understanding of how Streptococcus agalactiae (group B streptococcus, GBS) adapts during invasive infection, we performed a whole-genome transcriptome analysis after incubation with whole human blood. Global changes occurred in the GBS transcriptome rapidly in response to blood contact following shift from growth in a rich laboratory medium. Most (83%) of the significantly altered transcripts were down-regulated after 30 minutes of incubation in blood, and all functional categories of genes were abundantly represented. We observed complex dynamic changes in the expression of transcriptional regulators and stress response genes that allow GBS to rapidly adapt to blood. The transcripts of relatively few proven virulence genes were up-regulated during the first 90 minutes. However, a key discovery was that genes encoding proteins involved in interaction with the host coagulation/fibrinolysis system and bacterial-host interactions were rapidly up-regulated. Extensive transcript changes also occurred for genes involved in carbohydrate metabolism, including multi-functional proteins and regulators putatively involved in pathogenesis. Finally, we discovered that an incubation temperature closer to that occurring in patients with severe infection and high fever (40°C) induced additional differences in the GBS transcriptome relative to normal body temperature (37°C). Taken together, the data provide extensive new information about transcriptional adaptation of GBS exposed to human blood, a crucial step during GBS pathogenesis in invasive diseases, and identify many new leads for molecular pathogenesis research

    Remodeling of the Streptococcus agalactiae Transcriptome in Response to Growth Temperature

    Get PDF
    BACKGROUND: To act as a commensal bacterium and a pathogen in humans and animals, Streptococcus agalactiae (group B streptococcus, GBS) must be able to monitor and adapt to different environmental conditions. Temperature variation is a one of the most commonly encountered variables. METHODOLOGY/PRINCIPAL FINDINGS: To understand the extent to which GBS modify gene expression in response to temperatures encountered in the various hosts, we conducted a whole genome transcriptome analysis of organisms grown at 30 degrees C and 40 degrees C. We identified extensive transcriptome remodeling at various stages of growth, especially in the stationary phase (significant transcript changes occurred for 25% of the genes). A large proportion of genes involved in metabolism was up-regulated at 30 degrees C in stationary phase. Conversely, genes up-regulated at 40 degrees C relative to 30 degrees C include those encoding virulence factors such as hemolysins and extracellular secreted proteins with LPXTG motifs. Over-expression of hemolysins was linked to larger zones of hemolysis and enhanced hemolytic activity at 40 degrees C. A key theme identified by our study was that genes involved in purine metabolism and iron acquisition were significantly up-regulated at 40 degrees C. CONCLUSION/SIGNIFICANCE: Growth of GBS in vitro at different temperatures resulted in extensive remodeling of the transcriptome, including genes encoding proven and putative virulence genes. The data provide extensive new leads for molecular pathogenesis research
    corecore