2 research outputs found

    Automated Synthesis of Adversarial Workloads for Network Functions

    Get PDF
    Software network functions promise to simplify the deployment of network services and reduce network operation cost. However, they face the challenge of unpredictable performance. Given this performance variability, it is imperative that during deployment, network operators consider the performance of the NF not only for typical but also adversarial workloads. We contribute a tool that helps solve this challenge: it takes as input the LLVM code of a network function and outputs packet sequences that trigger slow execution paths. Under the covers, it combines directed symbolic execution with a sophisticated cache model to look for execution paths that incur many CPU cycles and involve adversarial memory-access patterns. We used our tool on 11 network functions that implement a variety of data structures and dis- covered workloads that can in some cases triple latency and cut throughput by 19% relative to typical testing workloads

    Performance Contracts for Software Network Functions

    Get PDF
    Software network functions (NFs), or middleboxes, promise flexibility and easy deployment of network services but face the serious challenge of unexpected performance behaviour. We propose the notion of a performance contract, a construct formulated in terms of performance critical variables, that provides a precise description of NF performance. Performance contracts enable fine-grained prediction and scrutiny of NF performance for arbitrary workloads, without having to run the NF itself. We describe BOLT, a technique and tool for computing such performance contracts for the entire software stack of NFs written in C, including the core NF logic, DPDK packet processing framework, and NIC driver. BOLT takes as input the NF implementation code and outputs the corresponding contract. Under the covers, it combines pre-analysis of a library of stateful NF data structures with automated symbolic execution of the NF’s code. We evaluate BOLT on four NFs—a Maglev-like load balancer, a NAT, an LPM router, and a MAC bridge—and show that its performance contracts predict the dynamic instruction count and memory access count with a maximum gap of 7% between the real execution and the conservatively predicted upper bound. With further engineering, this gap can be reduced
    corecore