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Abstract
Software network functions (NFs), or milddleboxes,

promise flexibility and easy deployment of network services,
but face the serious challenge of unexpected performance
behaviour. We propose the notion of a performance con-
tract, a construct formulated in terms of performance criti-
cal variables, that provides a precise description of NF per-
formance. Performance contracts enable fine-grained predic-
tion and scrutiny of NF performance for arbitrary workloads,
without having to run the NF itself.

We describe BOLT, a technique and tool for computing
such performance contracts for the entire software stack of
NFs written in C, including the core NF logic, DPDK packet
processing framework, and NIC driver. BOLT takes as input
the NF implementation code and outputs the corresponding
contract. Under the covers, it combines pre-analysis of a
library of stateful NF data structures with automated sym-
bolic execution of the NF’s code. We evaluate BOLT on four
NFs—a Maglev-like load balancer, a NAT, an LPM router,
and a MAC bridge—and show that its performance contracts
predict the dynamic instruction count and memory access
count with a maximum gap of 7% between the real execution
and the conservatively predicted upper bound. With further
engineering, this gap can be reduced.

1 Introduction

The goal of our work is to enable network operators and de-
velopers to predict and scrutinise the performance of soft-
ware network functions without having to run them. A net-
work function (NF) performs packet processing inside the
network, such as packet forwarding, load balancing, or net-
work address translation (NAT). NF development has been
moving away from custom hardware toward software run-
ning on commodity hardware. This change increases flexi-
bility and reduces development costs and time-to-market [22,
37, 38], but arguably makes it harder to predict the NF’s per-
formance. Unexpected NF performance behaviour makes it

harder for network operators to provision their networks and
exposes a new attack surface for adversaries seeking to de-
grade network performance.

We propose the construct of a performance contract for
NFs. A contract CU

N (i) answers the question of what the per-
formance of the NF N is like when processing packets from
an arbitrary input packet class i, with performance measured
in units of U . To illustrate, N could be a particular imple-
mentation of a router, U — the number of x86 instructions
it executes per packet, and i1 (respectively i2) — the class
of valid (respectively invalid) packets arriving at the router.
The contract predicts performance in terms of human read-
able expressions. These expressions are functions of what
we call performance critical variables (PCVs), which sum-
marise the impact of input history and configuration on the
given NF’s state and execution. In our example, the contract
could return functions p1(l) (respectively p2(l)) for valid (re-
spectively invalid) packets, where l is the length of the IP
prefix that matches the input packet’s destination IP address.
l is a PCV. For a NAT, a PCV could be the occupancy rate of
the NAT’s flow table. In this paper, we consider three perfor-
mance metrics: number of executed instructions, number of
memory accesses, and number of execution cycles. In gen-
eral, we consider an NF implementation to be the software
stack plus the hardware architecture it runs on.

Our work draws upon ideas from earlier work on
analysing/predicting performance and worst-case execution
time (WCET), either of software in general [26, 24, 45] or of
NFs in particular [15, 32]. The way performance contracts
differ from classic performance prediction and WCET analy-
sis is that, rather than producing a performance number, they
express performance as a function of critical parameters—
the PCVs. This enables contracts to expose the entire range
of values of the NF’s performance, not just a worst-case
bound, as well as explain how these values relate to differ-
ent workloads. Performance contracts also strike a favorable
balance between accuracy, utility, and human legibility.

We present BOLT, a technique and tool that analyses NF
code, without actually running it, to generate NF perfor-
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mance contracts. We draw inspiration from Vigor [47], a
technique for verifying that NFs written in C satisfy seman-
tic properties and are memory-safe. Vigor assumes a clear
separation of NF code into (a) a library of commonly used
NF data structures, which is written and formally verified by
experts, and (b) stateless NF logic that uses the library, is
written by NF developers, and is verified automatically by
Vigor using symbolic execution. In the same spirit, BOLT
starts from manually pre-computed performance contracts
for basic common data structures as a base case, and then au-
tomatically generates performance contracts for the NF code
that uses these data structures. Contracts can be computed
recursively for chains of NFs as well.

To help operators and developers handle the PCVs in con-
tracts, BOLT comes with a tool we call the Distiller, which
takes as input a packet trace and computes the PCV values
that result from that trace being processed by the target NF.

We evaluate the accuracy and utility of BOLT-generated
performance contracts for four NFs written in C using
DPDK: a NAT, a Maglev[17]-like load balancer, an LPM
router, and a MAC bridge. The contracts for these NFs pre-
dict the dynamic instruction count and memory access count
with a maximum gap of 7% between real executions and the
conservatively predicted upper bound. We explain the origin
of this gap and argue that it can be reduced to 0 with further
engineering. BOLT also generates contracts for the number
of execution cycles, in which case it relies on a hardware
model; the result is as accurate as the model allows. We close
our evaluation with example use cases where BOLT uncovers
performance issues and helps understand how to fix them.

In summary, we make two contributions in this paper:

• We propose the concept of a performance contract for
NFs, which expresses NF performance as a function of
performance critical variables.

• We demonstrate, using our BOLT prototype, that it is
possible to compute performance contracts that are ac-
curate, useful, and human-legible.

The BOLT source code is available as open source [1].

In the rest of the paper we define the performance con-
tract construct (§2), then describe how BOLT generates per-
formance contracts (§3) and how the BOLT Distiller helps
obtain a concrete performance number from a performance
contract given a particular packet trace (§4). Finally, we
present BOLT’s evaluation (§5), discuss its limitations (§6),
present related work (§7), and conclude (§8).

2 Performance Contracts

In this section, we define the performance contract construct,
and we use a running example to illustrate this definition.

2.1 Running Example: LPM Router
Algorithm 1 shows pseudocode for a simplified longest pre-
fix match (LPM) IPv4 router that stores the forwarding table
in a Patricia trie. The router first classifies packets based on
whether they are IPv4 or not (line 2). Invalid packets are im-
mediately dropped (line 6), thus incurring a constant perfor-
mance cost. Valid packets lead to a lookup in the LPM data
structure (line 3), which has a more complex performance
profile (lines 10–17), with the number of loop iterations be-
ing data-dependent (see lines 12 and 15).

Algorithm 1: Simple LPM Router

1 function processPacket (packet pkt)
2 if pkt.etherType == IPv4 then
3 dst_port = lpmGet (pkt.ipv4.dst_addr)
4 FORWARD (pkt, dst_port)
5 else
6 DROP (pkt)
7 end

8 function lpmGet (bit ip[32])
9 node = lpmRoot

10 for i in 0..31 do
11 b = ip[i]
12 if exists node.children[b] then
13 node = node.children[b]
14 else
15 break
16 end
17 end
18 return node.port

For clarity of exposition, the running example assumes
that the packet processing framework and every layer below
has zero impact on performance.

2.2 Definition
A performance contract describes the performance of NF
software running on a particular hardware configuration.

Contract CU
N : I → F is a map from input classes to

functions, i.e., CU
N maps input class i ∈ I to a function

pi(v1,v2, ...) ∈ F . Input class i is a specification that de-
scribes which inputs (e.g., packets) belong to that class, such
as a symbolic expression for “all valid IPv4 packets with-
out IP options.” The contract’s domain I spans the entire
input space of the program N. Function pi expresses the
performance exhibited by N when processing an arbitrary
input that belongs to class i. pi is a function of performance-
critical variables v1,v2, ..., and its value is measured in units
of U . pi can be as simple as a constant function.

In general, a performance contract can be formulated for
any program/procedure P, not just an NF. The performance



of P is determined by its input and its state at the time of
processing the input. P’s state, in turn, is determined by the
inputs it has processed in the past, its configuration parame-
ters, and its environment.

Performance-critical variables (PCVs) capture the influ-
ence on performance of anything other than P’s input.

Performance is expressed through metrics, such as number
of memory accesses or number of execution cycles. Perfor-
mance contracts are metric-specific. An essential property
of a performance contract is that, for any real execution that
satisfies the contract’s assumptions (configuration, input his-
tory, etc.), the measured performance is guaranteed to be no
more than the metric value predicted by the contract.

A performance contract for P is a recursive composition
of the performance contracts for its constitutive parts. P as
used above could be a chain of NFs, one individual NF, a
part of an NF, or—in the base case—a data structure method
whose contract has been derived manually by an expert.

Table 1 shows two performance contracts for our exam-
ple LPM router, corresponding to two performance metrics:
instruction count and memory accesses. There are two in-
put classes that emerge naturally from this NF’s code struc-
ture: invalid and valid packets. To process any packet in the
first class, the NF executes 2 instructions and 1 memory ac-
cess. For the second class, it executes 4 · l + 5 instructions
and l + 3 memory accesses, where l is the matched prefix
length. This example ignores all layers below the NF code,
so the matched prefix length l fully captures how anything
other than the input packet (in particular, the configuration
of the LPM table) influences performance. Hence it is the
sole PCV used by both contracts.

Input Class Instructions Memory Accesses
Invalid packets 2 1
Valid packets 4 · l +5 l +3

Table 1: Two stylised performance contracts for an example
LPM router. PCV l is the matched prefix length.

2.3 Rationale Behind PCVs in Contracts
Designing a performance contract involves a trade-off be-
tween the level of detail that the contract exposes about the
code and the contract’s legibility (i.e., how easy it is for a
human to parse and draw useful conclusions from).

Different users may need different balances between detail
and legibility. For instance, an NF developer who uses per-
formance contracts to debug and optimise the performance
of their own code will likely want more detail than a network
operator who has no access to NF implementations and uses
performance contracts solely to provision their network.

We chose to express performance as a function of PCVs,
because this enables one to navigate fluidly this trade-

off, i.e., to generate contracts that achieve different de-
tail/legibility balance. For example, consider a hypotheti-
cal NF whose only operation is to update, for every observed
packet, per-flow state stored in a hash map. The performance
of this NF is determined, in a straightforward manner, by the
collision rate of the hash map, which is itself determined, in
a complicated manner, by the workload and hash map con-
figuration. So, one can express the performance of this NF
as a complicated function of workload and configuration, or
as a simple function of the hash map’s collision rate. The
former arguably provides all the detail that any user of a per-
formance contract would ever care for, but may be too much
for a human to digest and draw conclusions from; the latter
hides some of this detail but still provides insight into what
determines NF performance and how, just at a different level.
So, it is possible to generate performance contracts that favor
detail or legibility by choosing the proper level of PCVs.

We are concerned about exposing, in a performance con-
tract, implementation-specific notions like collision rates or
matched prefix lengths. This may be fine for the developer
who chose or implemented the NF’s data structures, but awk-
ward for an operator who knows nothing about the NF’s im-
plementation. Still, we do not think that it is possible to de-
sign meaningful performance contracts that do not leak non-
trivial information about implementation. In the end, when
a network operator is debugging an unexpectedly slow net-
work device, they do end up digging into the device’s imple-
mentation and trying to understand how that interacts with
the given workload. A performance contract that distills how
implementation affects performance into a simple expression
would arguably be welcome in such cases.

If desired, operators and developers can bind the PCVs in
the performance expressions to values chosen by themselves
or by the BOLT Distiller. The latter, given a packet trace,
computes the concrete values of the PCVs at the end of the
NF’s processing of that trace.

3 Generating Performance Contracts

In this section, we describe BOLT, a technique and tool
that generates performance contracts. Our current prototype
works with three performance metrics: number of executed
instructions, memory accesses, and execution cycles.

We first provide background on the techniques BOLT em-
ploys (§3.1), then describe how to obtain contracts for data
structures (§3.2), entire NFs (§3.3), and chains of NFs (§3.4).
We close with a few implementation details (§3.5).

3.1 Background
The conceptually simplest way to explore all possible be-
haviours of a program is to execute it with every possible
input. As this does not typically scale to real-world pro-
grams, a more efficient approach is to group inputs in non-



overlapping classes, such that all inputs in the same class
follow the same execution path through the program (hence
induce the same behaviour); then we can explore induced
behaviour once per input class. For example, a program that
takes as input a 64-bit number and takes one of two possi-
ble actions depending on whether the number is positive or
negative has 264 possible inputs but only 2 input classes that
induce different behaviours.

Symbolic execution (SE) [8, 21] is a commonly used tech-
nique for exploring feasible execution paths of a program
and identifying the input class that triggers each one. SE re-
lies on a special program interpreter called a symbolic exe-
cution engine (SEE), which uses symbols to represent inputs
and propagates these symbols through the program. For in-
stance, if a program takes as input an integer x, the engine
associates with x a symbol α; if the program assigns to a
variable y the value x+ 1, the engine associates with y the
expression α + 1. If the program branches on a symbolic
value, the engine explores both paths, and keeps track of the
constraints that led down each path, such as α < 0. The en-
gine uses a constraint solver [13, 20] to ensure that it explores
only feasible paths and to identify the input class that triggers
each one. However, it can typically not identify all the feasi-
ble paths of a program due to path explosion [6]: the number
of paths is generally exponential in the number of branches
in the code, and symbolic pointers make things worse, as the
engine sometimes needs to concretise them, i.e., fork a new
path for each possible address that a symbolic pointer may
reference.

Vigor [47] leverages SE to verify semantic properties and
memory safety of a stateful NF. It assumes a clear separa-
tion of NF code into: a library of common NF data struc-
tures that is written and verified by experts; and stateless
NF code that uses the library and is written by NF devel-
opers. The experts that verify the library produce a semantic
contract for each library method, which specifies pre- and
post-conditions for the method; this is a tedious process that
requires time and expertise, but it needs to be done only once
per library method, hence its cost is amortised when multiple
NFs use the library.

Vigor uses SE to automatically explore all the feasible
paths through the stateless NF code. The Vigor toolchain in-
cludes an SEE tailored to the domain of NFs so that SE of the
stateless NF code does not suffer from path explosion. Vigor
automatically combines this analysis with the semantic con-
tracts for the library methods used by the NF, and generates
a proof that the NF as a whole satisfies the target semantic
properties and is memory-safe. Note that Vigor’s semantic
contracts are unrelated to our performance contracts and do
not provide any performance-related information.

BOLT reuses Vigor’s toolchain and adopts a similar NF
development process: A team of experts writes the library of
common NF data structures and their performance contracts
and symbolic models. NF developers write stateless NF code

Input Class Instructions Memory Accesses
Unconstrained 4 · l +2 l +1

Table 2: Performance contract for lpmGet.
PCV l is the matched prefix length.

that uses this library, and use BOLT to generate performance
contracts for the NF.

3.2 Base Case: Contracts for Data Structures

The first step is to manually generate performance contracts
for the parts of the code that BOLT does not analyse automat-
ically; for our current prototype, these are all the methods
for accessing data structures that keep NF state. In the same
spirit as Vigor, we rely on a library of common data struc-
tures that are analysed once and then reused across multiple
NFs. Table 2 shows manually generated performance con-
tracts for the lpmGet method used by our LPM router. Like
the performance contracts for the entire router, the ones for
its data structure express performance as a function of the
length of the matched prefix l, which is the only PCV.

Part of this process—perhaps the hardest one—is picking
a set of PCVs so as to achieve a target balance between pre-
cision and legibility. For example, the lpmGet method uses
pointer arithmetic (line 12), which the compiler unfolds into
a series of conditional jumps; as a result, the performance of
the method varies slightly, depending on whether each bit in
the matched IP prefix is 0 or 1. One option is to expose each
bit in the matched IP prefix as a PCV, in which case the con-
tract precisely predicts the performance of any real execu-
tions. Another option is to assume that each bit has the value
that results in the worst-case performance (essentially coa-
lesce multiple execution paths into the one among them with
the worst performance) and expose only the length of the
matched prefix as a PCV; in this case, the contract predicts
performance conservatively, i.e., overestimates the number
of execution cycles and memory accesses. This is an exam-
ple of how a higher-level PCV sacrifices a small amount of
precision for a more concise, hence legible contract.

3.3 Contracts for NFs

BOLT (Algorithm 2) takes as input the NF code (line 1) and
generates a special build where all calls to stateful methods
are replaced at link time with calls to corresponding sym-
bolic models (line 2). For example, in our LPM router, the
call to lpmGet is replaced with a call to the symbolic model
shown as Algorithm 3. Next, BOLT symbolically executes
this special build exhaustively and obtains all feasible exe-
cution paths through the stateless NF code (line 3). For our
LPM router, this results in 2 paths, one for valid IPv4 pack-
ets and one for invalid packets. For each execution path,



Algorithm 2: GetPerformanceContract

1 function GetPerformanceContract
Input : function Fn,

<opt> map <function, model> Models
<opt> map <function, perfContract> Contracts

Output: perfContract Perf _Contract
2 stubbedFn := SubstituteModels(Fn, Models)
3 paths := GetAllPaths(stubbedFn)
4 Perf _Contract := φ

5 foreach path in paths do
6 inputs := GetInputsForPath(path)
7 traceInstr := GetInstrTrace(stubbedFn, inputs)
8 perf := φ

9 foreach instr in traceInstr do
10 if instr is a call to a stateful function fn then
11 perf += Perf(Contracts[fn],

path.constraints)
12 else
13 perf += Perf(instr)
14 end
15 end
16 Perf _Contract.append(path, perf )
17 end
18 return Perf _Contract

Algorithm 3: lpmGet function model.

1 function lpmGet ( bit ip[32] );
2 return <new symbol>

BOLT also obtains symbolic path constraints, which consist
of two categories of constraints: (1) constraints on NF inputs
that cause it to go down the particular execution path and (2)
constraints on the abstract state of each data structure, before
and after each call to a stateful method. The second category
of constraints tells BOLT how stateless and stateful code in-
teract along the execution path.

Once it has obtained all feasible execution paths and their
path constraints, BOLT analyses each path: First, it passes
the path’s constraints to a solver to obtain concrete inputs
that exercise the path (line 6); these inputs include a packet,
as well as values for any symbols generated by the symbolic
models of the stateful methods. For our LPM router, one
path will yield a concrete invalid IPv4 packet, while the other
will yield a concrete valid IPv4 packet and a concrete port
that would result from the LPM lookup (e.g., port 0). Next,
for each of these concrete inputs, BOLT replays the NF ex-
ecution and obtains a unique trace of machine instructions
(line 7).

Finally, BOLT characterises the performance of each fea-
sible execution path by stepping through the corresponding
instruction trace: it traverses the trace, adding up the cost of

each instruction (line 13), until it hits a call to a modelled
method; when this occurs, it picks the right branch of the
method’s performance contract based on the constraints on
the abstract state of the data structure (line 11). In the case
of lpmGet, the performance contract has no branches. This
will typically not be the case for more complex data struc-
tures and methods, e.g., the performance contract of a flow
table get method will have different formulae depending on
whether the flow is present or absent in the flow table. In
such a scenario, BOLT uses the path constraints to pick the
right formula.

3.4 Contracts for NF chains
We summarise how BOLT can be extended to generate con-
tracts for chains of NFs. This can be useful in scenarios
where one NF’s worst-case performance is masked by an-
other NF on the same chain. For example, consider the sce-
nario where, in front of our LPM router, an operator deploys
a firewall that drops all packets matching prefixes that exceed
a given length. In this scenario, we will get a more accu-
rate performance prediction by using a performance contract
generated for the NF chain as a whole, than by using two
separate contracts generated for each NF and adding their
predictions.

We can extend BOLT for joint analysis of multiple chained
NFs as follows: First, generate a performance contract for
each individual NF as before. Next, pair together execu-
tion paths from two connected NFs; for each such path
pair, AND together their respective path constraints and add
equality constraints connecting the symbolic expression for
the packet sent by the first NF to the symbol representing the
packet received by the second NF. Next, use a solver to check
if the paths are compatible. Finally, generate a global perfor-
mance contract for the NF pair that sums up the performance
for each compatible path pair, while ignoring incompatible
ones.

For longer chains, rather than fully enumerating the en-
tire combinatorial explosion of all path tuples, BOLT could
piece together compatible paths across the chained NFs one
at a time in sequence, following a procedure similar to joint
symbolic execution [31]. This process further generalises to
more complex networks, so long as the topology forms a di-
rected acyclic graph (DAG).

3.5 Implementation Details

Instruction Replay. While replaying each execution path,
we use an instruction tracer based on Intel’s pin dynamic
binary instrumentation tool [25] to log the x86 instructions
along with memory locations touched along that path. Dur-
ing replay, we ensure that despite the difference between
the analysed code (linked against models) and production
code (linked against actual data structures), BOLT remains



conservative. This is done by compiling the stateless NF
code separately from the models and disabling any link-time-
optimisations when linking them together. While this leads
to slight over-estimations, it ensures that BOLT never under-
approximates performance.

Hardware model employed. For metrics that rely on the
underlying hardware (e.g., cycles), the BOLT prototype em-
ploys a simple, conservative hardware model that does not
model CPU components that are either too complex or con-
stitute trade secrets. For compute instructions, BOLT con-
servatively assumes the worst case performance cost of each
instruction as reported in the Intel manual [2] due to the pro-
prietary nature of out-of-order (OoO) instruction schedul-
ing within the processor. For memory instructions, we
only model the private L1 Data Caches. We do not model
proprietary features such as the slice selection algorithm
in the L3 cache, memory-level parallelism (MLP), or pre-
fetching. Consequently, BOLT conservatively assumes that
every memory access is serviced from main memory unless
it can definitively prove otherwise (by tracking spatial and
temporal locality of memory accesses in the L1D cache).

These proprietary features significantly improve NF per-
formance, given that an NF repeatedly performs the same
tasks (e.g., flow expiration, hash-ring traversal) in a tight
loop. Consequently, our hardware model causes BOLT to
over-estimate performance and in our experimental evalu-
ation §5, we find that BOLT comes within 4× for typical
workloads and 9× for pathological workloads. However, we
show that it should be possible to improve the accuracy of
BOLT’s contracts by plugging in a better hardware model.

Including DPDK and NIC driver code. BOLT allows anal-
ysis of the NF code at two different levels of abstraction: 1)
Only the NF code sitting atop DPDK or 2) the entire software
stack including the NF logic, DPDK and the NIC driver.

Doing this at the level of just the NF is relatively simple.
We stub out the DPDK send and receive calls and replace
them with models that inject the packet symbols. We then
filter the stateless instruction traces to include only the in-
structions between these two calls.

Building on recent work [34] that applied Vigor to the en-
tire NF software stack, BOLT can also include DPDK and the
NIC drivers in its performance predictions. The insight be-
hind this work is that while such frameworks as a whole may
be complex, simple NFs require only a small subset that pri-
marily reads and writes to device registers. This subset has
simple control flow and so can be symbexed along with the
stateless NF code. In this case, we include in the trace in-
structions from the beginning of the driver receive function
until the end of the corresponding send/drop function.

4 The BOLT Distiller

Once BOLT has built a performance contract, users can pre-
dict the performance of the NF under varying assumptions.
However, performance contracts can have several hundred to
a few thousand execution paths each, with their own unique
assumptions. Often, it is not obvious which assumptions are
reasonable or typical in the real world. To reason about this,
BOLT provides an additional tool called the Distiller.

The Distiller takes as input the NF code and a sample of
real-world traffic (as PCAP files). It feeds the traffic through
the NF code and logs the values that are induced in each
model parameter. For our running example, this would mean
linking the stateless code with a slightly modified version of
the data structure that traces the number of loop iterations
that occur, logging the matched prefix length. With these
traces, the Distiller computes a detailed breakdown of which
assumptions hold for each packet, and how that relates to
predicted performance. Note, the distiller does not affect the
generated performance contract in any way; it merely tells
the user which assumptions held for each packet in the given
trace allowing the user to then extrapolate and identify exe-
cution paths of interest in the performance contract.

The distiller also enables users to perform a sensitivity
analysis. For our example LPM, the user could, for instance,
see that most packets match prefixes that are 16 to 24 bits
long. Longer prefixes lead to 32% worse performance (133
vs 101 instructions) but may (hypothetically) account for
only 1% of traffic.

An operator can leverage the Distiller to balance risk with
resource utilisation to decide how to provision the network.
A developer can understand how any assumptions that they
have made regarding which scenarios are more common may
be wrong, guiding further optimisation efforts. We illustrate
further, the utility of the distiller in §5.2 and §5.3.

5 Evaluation

We now examine whether BOLT works, i.e., whether it pro-
duces correct performance contracts for software NFs (§5.1),
and illustrate, through example use cases, how BOLT can
help network operators (§5.2) and NF developers (§5.3).

5.1 Does BOLT work?

We experiment with a MAC bridge (Br), an LPM router im-
plemented with DPDK’s LPM data structure [3] (LPM), the
NAT from [47] (NAT), and a Maglev-like [17] Load Balancer
(LB).

Testbed. We use two directly connected servers: a de-
vice under test (DUT) and a traffic generator and sink (TG).
Both servers have Intel Xeon E5-2667v2 3.3GHz CPUs with
32GB of RAM; they are connected over Intel 82599ES 10Gb



NICs. The DUT runs one of the NFs, while the TG uses
MoonGen [18] to replay a PCAP file, one packet at a time,
to avoid any queuing or pipelining effects.

Methodology. First, Bolt generates performance contracts
for each of the 4 NFs for three different metrics — number
of executed instructions, number of memory accesses and
number of execution cycles. Each such contract subsumes
from several hundred to a few thousand unique execution
paths.

We compare the performance predicted by each contract
for various input packet classes to actual measurements. We
use broad input packet classes (e.g., “unconstrained traffic”
or “broadcast traffic”), each of them covering thousands to
millions of possible packets and exercising hundreds to thou-
sands of execution paths in the NFs. Given these broad in-
put classes, BOLT being conservative reports the predicted
performance value of the execution path with the worst pre-
dicted performance. Said differently, BOLT predicts the
worst performance that an input packet from this class could
encounter.

For most packet classes, we programmatically produced a
PCAP file that samples the packet class, i.e., contains a large
number of packets from that packet class, and obtained mea-
surements from our testbed. For one specific packet class
(discussed below), we could not produce a representative
PCAP file; in this case, to obtain ground truth, we modi-
fied the NF to synthesise the expected state (so that it did not
need to be built from actual packet history). For each NF
and input packet class, we measure the performance met-
rics predicted by BOLT: instruction count (IC), number of
memory accesses (MA), and latency (cycles); IC and MA are
measured using the binary instrumentation described in §3.5,
while latency is measured using high precision CPU clocks
(TSC) during separate non-instrumented runs.

Input packet classes. For each NF, we first consider un-
constrained traffic (scenarios Br1, LPM1, NAT1, and LB1).
Given this input packet class, the performance contract gen-
erated by BOLT predicts the absolute worst-case perfor-
mance of the NF. For Br, NAT, and LB, which maintain
and expire per-flow state, BOLT determines that the worst-
case performance happens when the NF’s MAC/flow table
is full, all the entries have collided with each other, and all
the entries are sufficiently aged so as to induce a mass ex-
piry event that completely clears the table when the current
input packet arrives. We were unable to produce a PCAP
file that led to this pathological scenario, but still wanted to
verify that, if this scenario did occur, the NF’s performance
would indeed be the one predicted by BOLT. This is why we
modified the NF to synthesise the necessary state (as stated
above). To generate unconstrained traffic for the LPM, we
used the CASTAN framework [32] which specialises in gen-
erating adversarial workloads for NFs.

For the NFs that maintain per-flow state, we also consider
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Figure 1: Accuracy of Performance contracts for multiple
NFs and packet classes in terms of "Instruction Count"(IC)
and "Number of Memory Accesses"(MA).

a few representative classes of input packets that do not en-
counter hash collisions or entry expirations. For the Bridge:
broadcast (Br2) and unicast (Br3) packets. For the NAT:
packets arriving from the internal network that belong to new
(NAT2) and established (NAT3) connections, and packets ar-
riving from the external network that do not belong to an es-
tablished connection and are dropped (NAT4). For the Load
Balancer: packets arriving from the external network that
belong to new flows (LB2), existing flows with unresponsive
(LB3) and live (LB4) backend servers and heartbeat packets
from backend servers (LB5).

The LPM uses DPDK’s two-tiered lookup table, which is
structured such that any packet with a matched prefix of ≤
24 bits incurs exactly one lookup and all other packets incur
exactly two lookups. Hence, any input packet class where
the packets are constrained to matched prefixes of > 24 bits
can incur the same performance as unconstrained traffic. In
addition, we consider input packets that are constrained to
matched prefixes of ≤ 24bits (LPM2).

Results for hardware-independent metrics. Figure 1
shows the results for the metrics IC and MA, and we see
that BOLT predicts them accurately, with a maximum over-
estimation of 7.5% and 7.6%, respectively. It is possible that
our generated test traffic may not have incurred the actual
worst case performance, hence the above numbers represent
an upper bound on Bolt’s over-estimation. In the patholog-
ical scenarios that correspond to unconstrained traffic (Br1,
NAT1, LB1) for NFs that maintain and expire per-flow state,
both the predicted and the actual performance is 8 orders of
magnitude worse than in the other scenarios (in these ex-
treme scenarios, a packet could take over a minute to be
processed). Even so, BOLT’s IC and MA predictions are
accurate (and conservative) with maximum over-estimation
2.36% and 3.03%, respectively. The over-estimation in IC
and MA predictions comes from two sources: (1) impreci-
sion introduced when we coalesce execution paths within the



NF+Class Predicted Bound Measured Cycles Ratio
NAT1 591,948,908,371 65,217,699,390 9.08
NAT2 7,401 2,376 3.11
NAT3 5,142 1,789 2.87
NAT4 2,956 884 3.34
Br1 295,984,939,878 32,383,472,634 9.14
Br2 7,329 2,013 3.64
Br3 7,383 1,808 4.08
LB1 591,969,879,756 66,062,284,173 8.96
LB2 5,299 2,386 2.22
LB3 8,108 2,541 3.19
LB4 4,300 2,310 1.86
LB5 4,837 2,079 2.33
LPM1 1,419 967 1.46
LPM2 1,015 545 1.86

Table 3: Accuracy of execution cycle performance contracts
for multiple NFs and packet classes.

stateful performance contract, and (2) small differences be-
tween the analysed code (linked against models) and the pro-
duction build (linked against real data structure implementa-
tions).

Results for our hardware-dependent metric. Table 3
shows the results for the number of execution cycles; BOLT
predicts them conservatively, within a factor of 4.08× for
typical workloads and 9.26× for the pathological (uncon-
strained) workloads. This is not surprising, given our sim-
plistic, conservative hardware model.

If we had a more accurate hardware model, we would ex-
pect BOLT’s results to be more accurate too. To validate this
hypothesis without investing significant time in a sophisti-
cated model, we performed a simple experiment.

We used three simple programs that traverse a non-
contiguously allocated linked list (P1), a linked list allocated
in a contiguous chunk of memory (P2), and an array (P3),
respectively, and had BOLT compute their performance con-
tracts. P1 lacks opportunities for MLP or prefetching, and
BOLT’s latency prediction was within 5% of the measured
value. P2 benefits from prefetching but not MLP, and BOLT’s
prediction was 6× higher than measured. P3 has ample op-
portunity for both prefetching and MLP, and BOLT’s pre-
dicted latency was 9× greater than measured latency. These
measurements indicate that the more the hardware behaves
like the model, the more accurate BOLT becomes. In future
work, we plan to bring the model closer to real hardware.

5.2 NF operator use-cases

In this subsection, we illustrate the utility of performance
contracts for NF operators and answer the following ques-
tions: Can performance contracts enable NF operators to 1)
Understand the NF’s performance for a variety of workloads,
in particular, when the NF is under attack? 2) Reason about
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Figure 2: Predicted latency as a function of hashring bucket
traversals, alongside the CCDF of traversals for a uniform
random workload. The Distiller allows the operator to make
an informed choice regarding where to position the thresh-
old.

the performance of a sequence of NFs, in order to design and
configure NF chains that meet their performance targets?

Understanding the performance of the NF under attack.
Performance contracts that detail the performance of every
feasible execution path through the NF code can be of partic-
ular utility to network operators for reasoning about the per-
formance of their NF, when under attack. We use the MAC
bridge as a motivating example to illustrate this use-case.

The bridge uses a MAC learning hash-table that defends
itself from collision attacks by incorporating a random key in
the hash algorithm. If the number of buckets traversed in the
hash-table during a put operation exceeds a certain thresh-
old, the key is renewed and the table re-hashed accordingly.
This rehashing is designed to be a defence from attackers that
know the hashing algorithm, but not the random key. How-
ever, this rehashing is particularly expensive and results in a
performance cliff (Table 4).

Given its performance cost, the rehashing mechanism
should be used only when a deliberate attack is suspected.
The threshold that triggers the re-hashing should be carefully
picked to avoid it occurring under normal circumstances. In
such a scenario, the contracts and the Distiller enable the op-
erator to easily understand the risks and trade-offs involved.

Figure 2 shows the analysis generated by the Distiller. The
CCDF shows that less than 0.2% packets incur more than 6
traversals under a uniform random test workload. Setting the
threshold to 6 results in the performance prediction shown in
the overlaying line. The instruction count is predicted to al-
ways be less than 1939 = (144×5+50×6+918) for typical
traffic.

Ability to reason about the performance of a network.
Typically, operators deploy NFs in chains with packets be-
ing processed by each NF in a sequence. In these scenarios,
the worst-case for one NF can often be masked by another,



Traffic Type Instructions
Known Source MAC 245 · e+144 · c+36 · t +82 · e · c+19 · e · t +882
Unknown Source MAC; No Rehashing 245 · e+144 · c+50 · t +82 · e · c+19 · e · t +918
Unknown Source MAC; Rehashing 245 · e+144 · c+50 · t +124 ·o+82 · e · c+19 · e · t +14 · t ·o+984069

Table 4: Bridge performance contract. Instructions are described as a function of the number of expired MAC entries (e), the
number of hash collisions (c) and bucket traversals (t) incurred in the hash table, and its occupancy (o).
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Figure 3: Composite NF of firewall + IP router. Naive-
Add represents the predictions obtained from trivial addition
of the individual contracts, while Composite-Bolt represents
the contract for the chain produced by Bolt. Bolt’s predic-
tions are more accurate, since it correctly takes into account
the inter-NF dependencies.

resulting in tighter bounds for the aggregate than the sum of
the parts (§3.4).

To evaluate BOLT’s ability to reason about such chains,
we sequence together a firewall and a static IP router. Un-
like our example LPM, this router can process IP options
(particularly the timestamp option [36]), but doing so can be
expensive, as can be seen in the contract in Table 5b. We
set up the firewall (contract shown in Table 5a) to drop any
packets with any IP options included.

The combined contract for the sequence, shown in Ta-
ble 5c, accurately reflects the best of both NFs. Packets with
IP options are quickly dropped, incurring no further cost, and
the remaining packets go through the fast path on the router.

The composition gap is further illustrated in Figure 3, the
worst-case performance prediction for the composite NF is
more accurate than that which would be obtained by naïvely
adding their individual performance contracts.

5.3 NF developer use-cases
We now illustrate the utility of performance contracts for NF
developers and answer the following questions: Can perfor-
mance contracts enable NF developers to 1) Identify design
flaws that lead to the NF performing poorly for certain work-
loads/packet traces? and 2) Pick appropriate data structure

implementations when multiple implementations exist?

Debugging configuration bottlenecks. The performance
contracts generated by BOLT provide the developer insight
into possible performance bottlenecks. We illustrate this util-
ity with a performance bug we found in VigNAT [4].

When dealing with traffic with high churn, VigNAT con-
sistently incurred significant latency (> 3µs) but only for
around 1.5% of packets, as can be seen in the latency CCDF
in Figure 4. Building the performance contract for VigNAT
(Table 6) allowed us to realise that such long tails were likely
an artifact of a large number of flows expiring at once since
the PCV "e" is dominant (by an order of magnitude) in the
performance contract. This is further corroborated by the
Distiller (Table 7), as the number of expired flows follows
a similar distribution and coincides with the worse perfor-
mance predictions.

As it turns out, VigNAT was inadvertently batching flow
expiry. This was due to VigNAT time-stamping flows only at
the granularity of a second. As a result, any packet arriving
at the change of the second on the clock would induce the
expiry of all of the flows that were supposed to expire during
the entire previous second.

After we increased the granularity of the timestamp, en-
suring a more uniform expiry of flows, VigNAT no longer
exhibited such a long tail. The resulting change can be seen
both in the latency CCDF (Figure 4) and Table 8 . The me-
dian per-packet latency rises since more packets are affected
by flow expiry; however, the long tail has been eliminated.

Picking the appropriate data structure implementation.
Often, developers need to make a choice between multiple
implementations of a data structure that can deliver varying
performance depending on the characteristics of the incom-
ing traffic. In such scenarios, the predictive power of BOLT
greatly simplifies this decision and lessens the need for more
elaborate A/B testing.

We illustrate this utility using two implementations of the
port allocator for a NAT (Allocator A & Allocator B) which
differ in subtle ways. Note, that the difference in perfor-
mance cannot always be captured in the big-O performance
specification: both allocators are O(1) in the common case
but have different constant factors in different scenarios. Al-
locator A, implemented as a doubly-linked list has similar
constants for allocating & de-allocating a new port, regard-
less of churn or flow-table occupancy. Allocator B, imple-
mented using an array and a singly linked list, has a similar



Traffic Type Instructions
No IP options 477
IP Options 298

(a) Firewall.

Traffic Type Instructions
No IP options 603
IP Options 79 ·n+646

(b) Static Router.

Traffic Type Instructions
No IP options 1053
IP Options 298

(c) Firewall+Router chain.

Table 5: NF performance contracts for the Firewall, the Static Router, and a combination of the two in a chain. Instructions are
described as a function of the number of IP options in the packet (n).

Traffic Type Instructions
Invalid packets (dropped) 359 · e+80 · e · c+38 · e · t +425
Known flows (forwarded) 359 · e+30 · c+18 · t +80 · e · c+38 · e · t +1030
New external flows (dropped) 359 · e+30 · c+18 · t +80 · e · c+38 · e · t +528
New internal flows; table full (dropped) 359 · e+30 · c+18 · t +80 · e · c+38 · e · t +639
New internal flows; table not full (forwarded) 359 · e+30 · c+44 · t +80 · e · c+38 · e · t +1316

Table 6: VigNAT performance contract. Instructions are described as a function of the number of expired flows (e) and the
number of hash collisions (c) and bucket traversals (t) incurred in the hash table.
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Figure 4: CCDF of packet latencies. Second granularity
refers to the NF from [47]. Millisecond Granularity is the
NF after the timestamp granularity was increased.

constant to allocator A for de-allocation but trades off a faster
allocation at low flow-table occupancies for a much slower
allocation at high flow-table occupancies.

The performance contracts capture this trade-off precisely.
By specifying the characteristics of the expected traffic, the
developer gains complete insight into the expected perfor-
mance of the NF for each data structure under consideration.
Figure 5 shows how the performance contracts precisely en-
capsulate the performance difference between the two imple-
mentations. Figures 6 & 7, show that the performance pre-
dicted by the contract is reflected in the performance of the
NAT, for each scenario. In scenarios with a large number of
long-lived flows (low churn), Allocator A outperforms Allo-
cator B by approximately 33%, while in high churn scenarios
with few, short-lived flows, Allocator B outperforms Alloca-
tor A by approximately 10%. BOLT predicts a performance
difference of 30% and 8% in the two scenarios, respectively.

Number of Expired Flows Probability Density(%)
0 98.459
1−63 0.0066
64 0.93
65 0.6
66+ 0.0044

Table 7: Distiller report for expired flows for VigNAT for
uniform random traffic, clearly indicating batching.

Number of Expired Flows Probability Density(%)
0 16.1
1 83.6
2 0.28
3+ 0.02

Table 8: Distiller report for expired flows for VigNAT for
uniform random traffic after the timestamp granularity was
increased. Clearly flows are expired more uniformly

6 Limitations

In this section we describe limitations of our current BOLT
prototype.

Since BOLT builds upon Vigor [47], it requires NFs to be
written with a clean stateless/stateful separation and to use a
library of pre-analysed data structures. An NF that does not
follow this design cannot be analysed accurately by BOLT.

The current BOLT prototype does not extend to multi-
threaded NFs with shared state. We expect the biggest chal-
lenge here to be the generation of performance summaries
for concurrent data structures that properly account for the
effects of cross-core interference.

The current BOLT prototype works for NFs that are im-
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Figure 7: Allocator B outperforms Al-
locator A in scenarios with high churn.

plemented using the DPDK [16] framework, using a single
processor core. Since DPDK is a kernel bypass framework,
BOLT does not concern itself with the Linux kernel. With
DPDK, best practices dictate pinning the NF to a core guar-
anteeing exclusive access to the L1 cache. An NF that per-
forms Linux system calls during packet processing or that
does not have exclusive non-preemptible use of a CPU core
cannot be analysed accurately by BOLT.

As mentioned previously, BOLT is accurate for metrics
that are independent of the underlying hardware. The slight
over-estimation (7% error) arises from two sources: 1) co-
alescing two or more execution paths into the most ex-
pensive of them all in stateful performance summaries and
2) disabling link-time optimisations to ensure no under-
approximation of performance due to differences between
the analysed and production code. From our experience,
the first factor is dominant and can be reduced to 0 if we
choose to expose additional PCVs that are less intuitive. For
hardware dependent metrics, BOLT is only as accurate as the
hardware model it employs. The simple, conservative hard-
ware model described in §3.5 leads to a 4× over-estimation
for typical workloads and 9× over-estimation for pathologi-
cal workloads. Additionally, it does not account for scenar-
ios in which multiple co-located NFs contend for resources
such as memory controllers [42] since it assumes a constant
performance cost for memory accesses. We plan to improve
the hardware model in future work.

The performance summaries for the stateful data struc-
tures were generated manually, by studying the assembly
code. While the effort can be amortised across all NFs that
use the data structure, the approach is laborious and poten-
tially error-prone. In future work, we plan to automate this.

BOLT currently requires access to the NF source code,
though we argue that this is not fundamental and merely
an artifact of our current research prototype. Having ac-
cess to the source significantly simplifies the manual anal-
ysis of the stateful code and allows us to attach semantic
meaning to PCVs. That said, much of the needed informa-
tion could also potentially be gleaned from debug informa-
tion that compilers optionally include in binaries or other-
wise deduced via reverse engineering. Likewise, access to
the source facilitates attaching semantic meaning to differ-
ent traffic classes in the stateless code and also gives us more

freedom in preparing analysis builds for the SEE. While our
current SEE analyses LLVM bit-code, which requires a spe-
cial build process, other engines [11] can directly analyse
X86 binaries and our stateful/stateless separation could be
rendered as separate object files. We leave redesigning our
system around such considerations to future work.

BOLT currently quantifies performance in terms of three
metrics (IC, MA, cycles) that provide a concrete first step
into understanding NF performance. Nevertheless, we plan
to extend BOLT to reason about more commonly used met-
rics such as throughput and end-to-end latency. We expect
the major challenge to arise from modelling of the PCIe bus,
the NIC and queueing delays (for latency) and modelling in-
struction and memory level parallelism (for throughput).

7 Related Work

Performance evaluation and diagnosis. There exists a
large body of work that focuses on generating and analysing
adversarial workloads that attack software performance. [12,
5, 39] describe manually generated, adversarial attacks on
specific data structures and network applications (e.g., IDS).
Others generate these workloads automatically: [41, 33, 35]
use fuzzing to find bottlenecks in individual methods and
data structures, [29] automatically detects certain complex-
ity attacks in web services and [32] automatically generates
adversarial inputs for NFs. All of these systems, focus only
on adversarial workloads, while performance contracts char-
acterise performance in the face of any arbitrary workload,
whether typical, ideal or adversarial.

Others focus on deriving formal upper bounds on perfor-
mance: Worst-Case Execution Time (WCET) Analysis [45].
Again, as with adversarial workloads, this only looks at one
aspect of the performance profile: the absolute worst-case.
These techniques are popular in the real-time systems do-
main where performance guarantees are a part of functional
correctness. However, because of this requirement, real-time
systems tend to avoid dynamic data structures and input-
dependent memory accesses, aspects that are commonplace
in NFs. Though not primarily designed as a WCET analy-
sis tool, BOLT can also be used to deduce worst-case bounds
(when generating contracts without any assumptions).



Performance side-channel attacks have also been analysed
using static analysis techniques. [7] uses symbolic analysis
to identify cost differentials between execution paths, rather
than to predict absolute performance.

Another large body of work predicts performance for
large-scale data analytics applications [43, 30]. This work
solves a different problem from Bolt and operates on a dif-
ferent scale with different challenges and effects to account
for. Rather than predicting performance for varying work-
loads on a given hardware platform, this work focuses on
predicting performance for a given workload but on varying
hardware configurations.

Other instances of previous work address the same prob-
lem as Bolt, but operate under different assumptions and thus
tackle different challenges. Like Bolt, [28] makes paramet-
ric performance predictions, but for probabilistic programs
that implement randomised algorithms where the challenge
lies in the probabilistic reasoning, rather than cache-effects
and other low-level details. TiML [44] also similarly predicts
performance but requires applications to be implemented in
the TiML functional language which uses type annotations to
enable more rigorous reasoning about performance bounds.
While Bolt assumes that NFs use a pre-analysed data struc-
ture library, it permits developers to continue to use low-level
languages like C, as is the norm for NFs. Bolt also reasons
about low-level hardware behaviour, such as cache effects.

Runtime performance analysis monitors systems during
execution to identify performance issues; we focus here on
work related to NFs. NFVPerf [27] passively monitors traf-
fic to find hardware and software bottlenecks in software
NFs. PerfSight [46] extracts low-level performance informa-
tion from software data planes and allows operators to find
which network functions are responsible for performance is-
sues. FlowTags [19] modifies middleboxes to tag sent pack-
ets and use tags from received packets to enforce network-
wide policies, including performance.

Program Analysis Applied to NFs. Several instances of
prior work have proposed using static analysis to help under-
stand, debug, and verify software NFs. StateAlyzr [23] stati-
cally analyses NFs to identify their per-flow and global state
to enable efficient state migration and redistribution. Other
approaches, use symbolic execution to find bugs or formally
verify correctness. [48, 9, 10] leverage this technique to au-
tomate bug finding and test-case generation. [40] symboli-
cally executes NF models to reason about network properties
like reachability and loops. [47, 14] use exhaustive symbolic
execution to formally verify functional correctness.

8 Conclusion

In this work, we propose the notion of performance contracts
for NFs. Performance contracts precisely characterise NF
performance for any arbitrary incoming workload, whether

typical, ideal or adversarial. We express performance con-
tracts in terms of Performance Critical Variables (PCVs)
which succinctly characterise how NF state and configu-
ration parameters affect the performance of the incoming
packet. Additionally, we present and evaluate BOLT, a tool
that automatically derives performance contracts with accu-
rate performance predictions from the NF code. Finally, we
walk through a series of use-case scenarios that illustrate
how network operators and NF developers can use BOLT to
understand and mitigate NF performance unpredictability.
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