4,809 research outputs found

    Evolution of a metastable phase with a magnetic phase coexistence phenomenon and its unusual sensitivity to magnetic field cycling in the alloys Tb5-xLuxSi3 (x <= 0.7)

    Full text link
    Recently, we reported an anomalous enhancement of the positive magnetoresistance beyond a critical magnetic field in Tb5Si3 in the magnetically ordered state, attributable to 'inverse metamagnetism'. This results in unusual magnetic hysteresis loops for the pressurized specimens, which are relevant to the topic of 'electronic phase separation'. In this paper, we report the influence of small substitutions of Lu for Tb, to show the evolution of these magnetic anomalies. We find that, at low temperatures, the high-field high-resistivity phase could be partially stabilized on returning the magnetic field to zero in many of these Lu substituted alloys, as measured through the electrical resistivity ({\rho}). Also, the relative fractions of this phase and the virgin phase appear to be controlled by a small tuning of the composition and temperature. Interestingly, at 1.8 K a sudden 'switch-over' of the value of {\rho} for this mixed phase to that for the virgin phase for some compositions is observed at low fields after a few field cycles, indicating metastability of this mixed phase

    Lagrangian perfect fluids and black hole mechanics

    Get PDF
    The first law of black hole mechanics (in the form derived by Wald), is expressed in terms of integrals over surfaces, at the horizon and spatial infinity, of a stationary, axisymmetric black hole, in a diffeomorphism invariant Lagrangian theory of gravity. The original statement of the first law given by Bardeen, Carter and Hawking for an Einstein-perfect fluid system contained, in addition, volume integrals of the fluid fields, over a spacelike slice stretching between these two surfaces. When applied to the Einstein-perfect fluid system, however, Wald's methods yield restricted results. The reason is that the fluid fields in the Lagrangian of a gravitating perfect fluid are typically nonstationary. We therefore first derive a first law-like relation for an arbitrary Lagrangian metric theory of gravity coupled to arbitrary Lagrangian matter fields, requiring only that the metric field be stationary. This relation includes a volume integral of matter fields over a spacelike slice between the black hole horizon and spatial infinity, and reduces to the first law originally derived by Bardeen, Carter and Hawking when the theory is general relativity coupled to a perfect fluid. We also consider a specific Lagrangian formulation for an isentropic perfect fluid given by Carter, and directly apply Wald's analysis. The resulting first law contains only surface integrals at the black hole horizon and spatial infinity, but this relation is much more restrictive in its allowed fluid configurations and perturbations than that given by Bardeen, Carter and Hawking. In the Appendix, we use the symplectic structure of the Einstein-perfect fluid system to derive a conserved current for perturbations of this system: this current reduces to one derived ab initio for this system by Chandrasekhar and Ferrari.Comment: 26 pages LaTeX-2

    On the Noether charge form of the first law of black hole mechanics

    Get PDF
    The first law of black hole mechanics was derived by Wald in a general covariant theory of gravity for stationary variations around a stationary black hole. It is formulated in terms of Noether charges, and has many advantages. In this paper several issues are discussed to strengthen the validity of the Noether charge form of the first law. In particular, a gauge condition used in the derivation is justified. After that, we justify the generalization to non-stationary variations done by Iyer-Wald.Comment: Latex, 16 pages, arguments on gauge conditions and near-stationary entropy are added, accepted for publication in Physical Review

    Efficient simulations with electronic open boundaries

    Get PDF
    We present a reformulation of the Hairy Probe method for introducing electronic open boundaries that is appropriate for steady state calculations involving non-orthogonal atomic basis sets. As a check on the correctness of the method we investigate a perfect atomic wire of Cu atoms, and a perfect non-orthogonal chain of H atoms. For both atom chains we find that the conductance has a value of exactly one quantum unit, and that this is rather insensitive to the strength of coupling of the probes to the system, provided values of the coupling are of the same order as the mean inter-level spacing of the system without probes. For the Cu atom chain we find in addition that away from the regions with probes attached, the potential in the wire is uniform, while within them it follows a predicted exponential variation with position. We then apply the method to an initial investigation of the suitability of graphene as a contact material for molecular electronics. We perform calculations on a carbon nanoribbon to determine the correct coupling strength of the probes to the graphene, and obtain a conductance of about two quantum units corresponding to two bands crossing the Fermi surface. We then compute the current through a benzene molecule attached to two graphene contacts and find only a very weak current because of the disruption of the π-conjugation by the covalent bond between the benzene and the graphene. In all cases we find that very strong or weak probe couplings suppress the current

    The Frenet Serret Description of Gyroscopic Precession

    Get PDF
    The phenomenon of gyroscopic precession is studied within the framework of Frenet-Serret formalism adapted to quasi-Killing trajectories. Its relation to the congruence vorticity is highlighted with particular reference to the irrotational congruence admitted by the stationary, axisymmetric spacetime. General precession formulae are obtained for circular orbits with arbitrary constant angular speeds. By successive reduction, different types of precessions are derived for the Kerr - Schwarzschild - Minkowski spacetime family. The phenomenon is studied in the case of other interesting spacetimes, such as the De Sitter and G\"{o}del universes as well as the general stationary, cylindrical, vacuum spacetimes.Comment: 37 pages, Paper in Late

    Decay of charged scalar field around a black hole: quasinormal modes of R-N, R-N-AdS and dilaton black holes

    Full text link
    It is well known that the charged scalar perturbations of the Reissner-Nordstrom metric will decay slower at very late times than the neutral ones, thereby dominating in the late time signal. We show that at the stage of quasinormal ringing, on the contrary, the neutral perturbations will decay slower for RN, RNAdS and dilaton black holes. The QN frequencies of the nearly extreme RN black hole have the same imaginary parts (damping times) for charged and neutral perturbations. An explanation of this fact is not clear but, possibly, is connected with the Choptuik scaling.Comment: 10 pages, LaTeX, 4 figures, considerable changes made and wrong interpretation of computations correcte

    Entropy of Constant Curvature Black Holes in General Relativity

    Get PDF
    We consider the thermodynamic properties of the constant curvature black hole solution recently found by Banados. We show that it is possible to compute the entropy and the quasilocal thermodynamics of the spacetime using the Einstein-Hilbert action of General Relativity. The constant curvature black hole has some unusual properties which have not been seen in other black hole spacetimes. The entropy of the black hole is not associated with the event horizon; rather it is associated with the region between the event horizon and the observer. Further, surfaces of constant internal energy are not isotherms so the first law of thermodynamics exists only in an integral form. These properties arise from the unusual topology of the Euclidean black hole instanton.Comment: 4 pages LaTeX2e (RevTeX), 2 PostScript figures. Small corrections in the text and the reference

    Asymmetric Light Bending in the Equatorial Kerr Metric

    Full text link
    The observation of the bending of light by mass, now known as gravitational lensing, was key in establishing general relativity as one of the pillars of modern physics. In the past couple of decades, there has been increasing interest in using gravitational lensing to test general relativity beyond the weak deflection limit. Black holes and neutron stars produce the strong gravitational fields needed for such tests. For a rotating compact object, the distinction between prograde and retrograde photon trajectories becomes important. In this paper, we explore subtleties that arise in interpreting the bending angle in this context and address the origin of seemingly contradictory results in the literature. We argue that analogies that cannot be precisely quantified present a source of confusion
    corecore