28 research outputs found

    Are naringenin and quercetin useful chemicals in pest-management strategies?

    Get PDF
    The effects of two polyphenolic flavonoids (flavanone naringenin and flavonol quercetin) on development, fecundity, and mortality of the pea aphid, Acyrthosiphon pisum Harris (Hemiptera: Aphididae), were determined in vitro, on an artificial diets. Also determined in vitro (DC EPG method), on sucrose–agarose gels, were the effects of flavonoids on the probing and feeding behavior of adult apterae. When added to a liquid diet, higher concentrations of studied flavonoids increased the developmental time, the pre-reproductive period, and mortality and decreased fecundity and the intrinsic rate of natural increase of A. pisum. In most events associated with stylet activity (as indicated by EPG waveform g-C), differences in probing behavior did not statistically differ between the control gel and those with flavonoids; quercetin at 10, 100, and 1,000 µg cm(−3) prolonged the number of gel penetrations; and quercetin only at 10,000 μg cm(−3) prolonged the time the first g-C waveform was observed. Addition of flavonoids to the gels generally reduced passive ingestion from fluids of the gels (EPG waveform g-E2). At higher concentrations (>1,000 µg cm(−3)) the flavonoids completely stopped salivation (EPG waveform g-E1) and passive ingestion from fluids of the gels (EPG waveform g-E2). In events associated with active ingestion (EPG waveform g-G), however, differences in feeding behavior did not statistically differ between the control gel and those with flavonoids. The present findings demonstrate detrimental effects of the flavanone naringenin and flavonol on the behavior of the pea aphid. This can be employed in a biotechnological projects for plant breeding resistant to herbivores, including aphids

    Transcriptional profiling of catalase genes in juglone-treated seeds of maize (Zea mays L.) and wheat (Triticum aestivum L.)

    Get PDF
    The major aim of the present study was to investigate the influence of juglone (JU; 5-hydroxy-1,4 naphthoquinone) treatments on the expression level of Cat1, Cat2 and Cat3 genes, encoding the respective catalase isozymes in maize (Zea mays L.) and wheat (Triticum aestivum L.) seeds. In parallel, germination efficiency, catalase (CAT) activity and hydrogen peroxide (H2O2) content in juglone-exposed cereal seeds were assessed. Juglone applications significantly stimulated abundance of three target catalase transcripts as well as induced CAT activity and generation of H2O2 in both maize and wheat kernels. Furthermore, germination process of juglone-affected maize seeds was more severe suppressed than in case of wheat kernels. The role of juglone in triggering the oxidative stress as well as antioxidative responses in seeds of the studied model cereal species are discussed

    Expression of the Biofilm-Associated Genes in Methicillin-Resistant <i>Staphylococcus aureus</i> in Biofilm and Planktonic Conditions

    No full text
    The role of genes that are essential for development of Staphylococcus aureus biofilm during infection is not fully known. mRNA from two methicillin-resistant S. aureus strains that formed weak and strong biofilm on polystyrene plates were isolated at five time points from cells grown in biofilm and planktonic culture. Quantitative real-time PCR analysis showed that the expression levels of investigated genes under biofilm conditions were significantly higher than under planktonic conditions. The expression levels of the gene encoding elastin binding protein (ebps) and laminin binding protein (eno) were significantly increased in biofilm at 3 h, both in strongly and weakly adhering strain. The peak expression of fib gene encoding fibrinogen binding protein was found at 6 and 8 h in the case of strongly and weakly adhering strain, respectively. The expression of icaA and icaD genes in both strains was significantly higher under biofilm conditions when comparing to planktonic cells during 12 h. The expression level of the genes encoding binding proteins and the glucosamine polymer polysaccharide intercellular adhesin (PIA) slowly decreased after 24 h. Finally, we found that the expression levels of genes encoding binding factors in weakly adhering strain were significantly lower than in strongly adhering strain

    Changes in the content of thiol compounds and the activity of glutathione s-transferase in maize seedlings in response to a rose-grass aphid infestation.

    No full text
    The rose-grass aphid (Methopolophium dirhodum Walk.) is a major pest of maize (Zea mays L.), but little is known about the biochemical interactions between M. dirhodum and its host plant. Thiol compounds and glutathione S-transferase (GST) play a crucial role in the defense responses of maize to biotic stress factors, including aphids. The purpose of this research was to evaluate the impact of M. dirhodum herbivory on the total thiol (TT), protein bound thiol (PT), reduced glutathione (GSH) and oxidized glutathione (GSSG) contents as well as the activity of GST in three varieties of Z. mays (Złota Karłowa, Ambrozja and Płomyk), that were classified as aphid-susceptible, aphid-relatively resistant and aphid-resistant, respectively. The earliest and strongest aphid-triggered alterations in the levels of TT, PT and GSH, and the greatest induction of GST activity, were recorded in the resistant Płomyk seedlings in relation to the relatively resistant Ambrozja and the susceptible Złota Karłowa

    CHLOROPHYLL CONTENT OF APHID-INFESTED SEEDLING LEAVES OF FIFTEEN MAIZE GENOTYPES

    No full text
    We measured the total chlorophyll (Chl a+b) content in seedling leaves of fifteen maize cultivars infested by two studied aphid species (oligophagous Rhopalosiphum padi L., monophagous Sitobion avenae F.) 7 and 14 days after the beginning of infestation, using a SPAD-502 chlorophyll meter. Chlorophyll loss was more severe in R. padi-infested than in S. avenae-infested plants. Chlorophyll depletion was greater after long-term (14 days) than after short-term aphid infestation in the investigated host systems. Seedlings of Złota Karłowa and Tasty Sweet were more damaged by aphid feeding; Ambrozja and Płomyk plants were less damaged by aphid feeding

    Expression of Thioredoxin/Thioredoxin Reductase System Genes in Aphid-Challenged Maize Seedlings

    No full text
    Thioredoxins (Trxs) and thioredoxin reductases (TrxRs) encompass a highly complex network involved in sustaining thiol-based redox homeostasis in plant tissues. The purpose of the study was to gain a new insight into transcriptional reprogramming of the several genes involved in functioning of Trx/TrxR system in maize (Zea mays L.) seedlings, exposed to the bird cherry-oat aphid (Rhopalosiphum padi L.) or the rose-grass aphid (Metopolophium dirhodum Walk.) infestation. The biotests were performed on two maize genotypes (susceptible Złota Karłowa and relatively resistant Waza). The application of real-time qRT-PCR technique allowed to identify a molecular mechanism triggered in more resistant maize plants, linked to upregulation of thioredoxins-encoding genes (Trx-f, Trx-h, Trx-m, Trx-x) and thioredoxin reductase genes (Ftr1, Trxr2). Significant enhancement of TrxR activity in aphid-infested Waza seedlings was also demonstrated. Furthermore, we used an electrical penetration graph (EPG) recordings of M. dirhodum stylet activities in seedlings of the two studied maize varieties. Duration of phloem phase (E1 and E2 models) of rose-grass aphids was about three times longer while feeding in Waza plants, compared to Złota Karłowa cv. The role of activation of Trx/TrxR system in maintaining redox balance and counteracting oxidative-induced damages of macromolecules in aphid-stressed maize plants is discussed

    Antimetabolic effect of phytohemagglutinin to the grain aphid Sitobion avenae fabricius

    No full text
    The insecticidal activity of plant lectins against a wide range of insect species have been intensively studied. Understanding the mechanism of the toxicity of lectins is one of the studied aspects. In the present research, the first step was determine the effect of phytohemagglutinin (PHA) on the development, fecundity and mortality of grain aphid. Next, the effect of PHA lectin on the activity of such enzymes as: α- and β-glucosidases, alkaline (AkP) and acid (AcP) phosphatases, aminopeptidase N and cathepsin L involved in the metabolism of sugar, phosphorus and proteins of an adult apterae aphids was investigated. The PHA lectin added into the liquid diet increased the pre-reproductive period, mortality of Sitobion avenae, the time of generation development and decreased its fecundity and the intrinsic rate of natural increase. In addition, activity of α-glucosidase, alkaline phosphatase and aminopeptidase N of adult apterae exposed to PHA were reduced. The results indicate that the insecticidal activity of PHA on S. avenae may involve changes in activity of the enzymes in the midgut and it may be part of its toxicity
    corecore