20 research outputs found

    Antioxidant potential and iodine accumulation in tomato (Solanum lycopersicum L.) seedlings as the effect of the application of three different iodobenzoates

    No full text
    Iodine (I) has a beneficial effect on plant growth, development and antioxidant activity. The study aimed to compare iodine uptake after the application of iodobenzoates (2-iodobenzoic acid (2-IBeA), 4-iodobenzoic acid (4-IBeA) and 2,3,5-triiodobenzoic acid (2,3,5-triIBeA)) as well as potassium iodide (KI) to tomato seedlings. One of the main tasks was to evaluate how the tested compounds applied in different concentrations (5, 10, 25 and 50 μM) affect the growth and antioxidative potential of tomato seedlings. Negative effect on growth and development of tomato seedlings was noted for 4-IBeA applied in 10–50 μM I concentrations. The 2,3,5-triIBeA application affected shoot deformation. All tested iodine compounds increased iodine level in leaves and roots of tomato seedlings. Iodine after KI application was accumulated mainly in leaves, while after iodobenzoates treatment in roots of tomato seedlings, which is probably related to their weaker transport to the upper parts of the plant. Tested compounds variously modified the content of ascorbic and dehydroascorbic acids in tomato leaves depending on applied concentration. KI treatment improved ascorbate peroxidase activity, but all iodobenzoates decreased APX and catalase activity in leaves. 4-IBeA (5 μM I) and 2,3,5-triIBeA (25 and 50 μM I) increased guaiacol peroxidase activity in leaves. It can be concluded that mechanisms responsible for plant oxidative metabolism were variously affected by the iodine compounds and its concentration in the nutrient solution

    Iodosalicylates and iodobenzoates supplied to tomato plants affect the antioxidative and sugar metabolism differently than potassium iodide

    No full text
    Iodine is considered as a beneficial element for plants. As compared to the mineral form of iodine, the effect of organoiodine compounds on physiological and biochemical processes in plants is weakly recognized. This study describes the influence of different forms of iodine – mineral as KI and organic as iodosalicylates and iodobenzoates on the antioxidative and sugar metabolism of tomato plants. Plants were treated with KI and with the following organoiodine compounds: 5-iodosalicylic acid (5-ISA), 3,5-diiodosalicylic acid (3,5-diISA), 2-iodobenzoic acid (2-IBeA) and 4-iodobenzoic acid (4-IBeA). The effect of salicylic acid (SA) and benzoic acid (BeA) on plants was also tested. The plants revealed a lower tolerance to 3,5-diISA, 4-IBeA and slightly to BeA as compared to control. Tested compounds did not affect the content of ascorbic (AA) and dehydroascorbic (DHA) acid. All tested compounds, with the exception of 2-IBeA, did not affect the content of phenols, phenylpropanoids and anthocyanins in leaves. Tested compounds variously modified the activity of catalase (CAT), ascorbic peroxidase (APX) and peroxidase (POX) in leaves and roots. The content of soluble sugars in tomato leaves and roots varied depending on the combination, with a noticeable tendency to increase after the application of organoiodine compounds

    Iodine biofortification of spinach by soil fertigation with additional application of humic and fulvic acids

    No full text
    <p>The aim of this research was to determine the interaction between fertigation with KIO<sub>3</sub> and pre-sowing application of exogenous humic and fulvic acids (used in the form of the commercial concentrate Humistar, HU) on yield, iodine biofortification and chemical composition of spinach cv. ‘Olbrzym zimowy’. The plants were cultivated in a pot experiment with the following treatments: control, pre-sowing HU application at doses of 0.0125, 0.05 and 0.2 cm<sup>3</sup> HU dm<sup>−3</sup> of soil, KIO<sub>3</sub> fertigation and KIO<sub>3</sub> fertigation with pre-sowing HU application at doses of 0.0125, 0.05 and 0.2 cm<sup>3</sup> HU dm<sup>−3</sup> of soil, fertigation at a dose of 0.0004% I. The use of HU and fertigation with KIO<sub>3</sub> caused an increase of iodine content and iodine transfer factor (TF) from the soil to the plants; with the highest extent in the pot treated with KIO<sub>3</sub> + 0.2 cm<sup>3</sup> HU dm<sup>−3</sup> of soil.</p

    Iodine Biofortification of Potato (Solanum tuberosum L.) Grown in Field

    No full text
    Despite wide prevention programmes, iodine deficiency remains a substantial problem in various populations around the world. Consumption of crop plants with increased iodine content may help supply additional amounts of that element in a daily diet. The aim of the work was to evaluate the efficiency of iodine biofortification of potato tubers. Soil application of KI and foliar application of KIO3 in doses up to 2.0 kg I ha&minus;1 were tested in a three-year field experiment. Biomass, yield as well as dry matter, iodine, starch, and soluble sugar content in potato tubers were analyzed. No negative effect of tested methods of iodine application on potato yield or dry matter content was observed. Both soil and foliar application of iodine allowed to obtain potato tubers with increased content of that element with no decrease of starch or sugar content. The highest efficiency of iodine biofortification was noted for foliar spraying with KIO3 in a dose of 2.0 kg I ha&minus;1. The obtained level of iodine in 100 g of potatoes could be sufficient to cover up to 25% of Recommended Daily Allowance for that element. The findings of the study indicate that potatoes biofortified with iodine can become an additional source of I in a daily diet

    SelectedAspects of Iodate and Iodosalicylate Metabolism in Lettuce Including the Activity of Vanadium Dependent Haloperoxidases as Affected by Exogenous Vanadium

    No full text
    In marine algae, vanadium (V) regulates the cellular uptake of iodine (I) and its volatilization as I2, the processes catalyzed by vanadium-dependent haloperoxidases (vHPO). Relationships between I and vanadium V in higher plants, including crop plants, have not yet been described. Little is known about the possibility of the synthesis of plant-derived thyroid hormone analogs (PDTHA) in crop plants. The activity of vHPO in crop plants as well as the uptake and metabolism of iodosalicylates in lettuce have not yet been studied. This studyaimed to determine the effect of V on the uptake and accumulation of various forms of I, the metabolism of iodosalicylates and iodobenzoates and, finally, on the accumulation of T3 (triiodothyronine&mdash;as example of PDTHA) in plants. Lettuce (Lactuca sativa L. var. capitata &lsquo;Melodion&rsquo; cv.) cultivation in a hydroponic NutrientFilm Technique (NFT) system was conducted with the introduction of 0 (control), 0.05, 0.1, 0.2, and 0.4 &micro;M V doses of ammonium metavanadate (NH4VO3) in four independent experiments. No iodine treatment was applied in Experiment No. 1, while iodine compounds were applied at a dose of 10 &micro;M (based on our own previous research) as KIO3, 5-iodosalicylic acid (5-ISA) and 3,5-diiodosalicylic acid (3,5-diISA) in Experiment Nos. 2, 3 and 4, respectively. When lettuce was grown at trace amount of I in the nutrient solution, increasing doses of V contributed to the increase of (a) I content in roots, (b) I uptake by whole lettuce plants (leaves + roots), and (c) vHPO activity in leaves (for doses 0.05&ndash;0.20 &micro;M V). Vanadium was mainly found in roots where the content of this element increased proportionally to its dose. The content of V in leaves was not modified by V introduced into the nutrient solution. We found that5-ISA, 3,5-diISA and T3 were naturally synthesized in lettuce and its content increased when 5-ISA, 3,5-diISA were applied. Quantitative changes in the accumulation of organic metabolites (iodosalicylates and iodobenzoates) accumulation were observed, along with increased T3 synthesis, with its content in leaves exceeding the level of individual iodosalicylates and iodobenzoates. The content of T3 was not affected by V fertilization. It was concluded that iodosalicylates may participate in the biosynthesis pathway of T3&mdash;and probably of other PDTHA compounds

    Antioxidants and Health-Beneficial Nutrients in Fruits of Eighteen Cucurbita Cultivars: Analysis of Diversity and Dietary Implications

    No full text
    Aging is accompanied by gradual accumulation of molecular damage within cells in response to oxidative stress resulting from adverse environmental factors, inappropriate lifestyle, and numerous diseases. Adequate antioxidant intake is a key factor of proper diet. The study aimed to assess the antioxidant/antiradical capacities of Cucurbita fruits (18 cultivars of the species: C. maxima Duch., C. moschata Duch., C. pepo L., and C. ficifolia Bouch&eacute;) grown in central Europe. The analyses were based on the FRAP (ferric reducing antioxidant power), CUPRAC (cupric ion reducing antioxidant capacity), and DPPH (2,2-diphenyl-1-picrylhydrazyl radical) assays. The content of phenolic compounds and &beta;-carotene was evaluated with HPLC (high performance liquid chromatography), while the main macro- and micronutrients by ICP-OES (inductively coupled plasma mass spectrometry). The results revealed high intraspecies variability within the Cucurbita genus. The Japanese &lsquo;Kogigu&rsquo; fruits were distinguished as extraordinary sources of phenolic compounds, including syringic and protocatechuic acids, catechin, and kaempferol. Another popular cultivar &lsquo;Hokkaido&rsquo; exhibited the highest antioxidant and antiradical capacities. Most of the fruits proved to be rich sources of zinc and copper. The obtained data are discussed in the context of optimized nutrition of the elderly and suggest that Cucurbita fruits should become daily components of their diet

    The quality of carrot (Daucus carota L.) cultivated in the field depending on iodine and selenium fertilization

    No full text
    The aim of the study was to evaluate the influence of various chemical forms of iodine (I− and IO3−) and selenium (SeO32− and SeO42−) on the nutritional and health-promoting quality of carrot (Daucus carota L.) storage roots. The experiment (conducted in 2012-2014) comprised the soil fertilization of carrot ‘Kazan’ F1 in the following combinations: 1. Control, 2. KI, 3. KIO3, 4. Na2SeO4, 5. Na2SeO3, 6. KI + Na2SeO4, 7. KIO3 + Na2SeO4, 8. KI + Na2SeO3, 9. KIO3+ Na2SeO3. Iodine and selenium were applied twice: before sowing and as top dressing in a total dose of 5 kg I ha−1 and 1 kg Se ha−1. No significant influence of iodine and selenium fertilization was noted with respect to average root weight and leaf yield. Each year, the application of KI + Na2SeO4 negatively affected the content of glucose and total sugars in carrot. An increased sucrose level was noted in the roots of plants treated with KIO3 + Na2SeO4, with a total sugar concentration comparable to the control. Irrespective of the year, carrots fertilized with KI were characterized by the highest accumulation of nitrates (III) – NO2− in roots. The simultaneous introduction of iodine and selenium compounds (KI + Na2SeO4, KIO3 + Na2SeO4, KI + Na2SeO3 and KIO3 + Na2SeO3) into the soil reduced the content of nitrates (III) in carrot as compared to combinations with the individual application of these compounds. The influence of the tested factors on other analysed parameters (the content of dry weight, nitrates (V), chlorides, oxalates, citrates, free amino acids, carotenoids, phenolic compounds, phenylpropanoids, flavonols and anthocyanins as well as free radical scavenging activity (DPPH) was rather year-dependent

    The Impact of Carrot Enriched in Iodine through Soil Fertilization on Iodine Concentration and Selected Biochemical Parameters in Wistar Rats.

    No full text
    Iodine is one of the trace elements which are essential for mammalian life. The major objective of iodine biofortification of plants is to obtain food rich in this trace element, which may increase its consumption by various populations. Additionally, it may reduce the risk of iodine deficiency diseases. In this research for the first time we have assessed the bioavailability of iodine from raw or cooked carrot biofortified with this trace element on iodine concentration in selected tissues and various biochemical parameters as well as mRNA expression of some genes involved in iodine metabolism in Wistar rats. Statistically, a significantly higher iodine level was determined in urine, faeces and selected tissues of rats fed a diet containing biofortified raw carrot as compared to a diet without iodine and a diet containing control cooked carrot. Biofortified raw carrot significantly increased triiodothyronine concentration as compared to animals from other experimental groups. The highest thyroid stimulating hormone level was determined in rats fed control cooked carrots. mRNA expression of selected genes was affected by different dietary treatment in rats' hearts. Biofortified raw and cooked carrot could be taken into account as a potential source of iodine in daily diets to prevent iodine deficiency in various populations

    Transcriptomic and metabolic studies on the role of inorganic and organic iodine compounds in lettuce plants

    No full text
    Abstract Iodine (I) is considered a beneficial element or even micronutrient for plants. The aim of this study was to determine the molecular and physiological processes of uptake, transport, and metabolism of I applied to lettuce plants. KIO3, KIO3 + salicylic acid, 5-iodosalicylic acid and 3,5-diiodosalicylic acid were applied. RNA-sequencing was executed using 18 cDNA libraries constructed separately for leaves and roots from KIO3, SA and control plants. De novo transcriptome assembly generated 1937.76 million sequence reads resulting in 27,163 transcripts with N50 of 1638 bp. 329 differentially expressed genes (DEGs) in roots were detected after application of KIO3, out of which 252 genes were up-regulated, and 77 were down-regulated. In leaves, 9 genes revealed differential expression pattern. DEGs analysis indicated its involvement in such metabolic pathways and processes as: chloride transmembrane transport, phenylpropanoid metabolism, positive regulation of defense response and leaf abscission, and also ubiquinone and other terpenoid-quinone biosynthesis, protein processing in endoplasmic reticulum, circadian rhythm including flowering induction as well as a putative PDTHA (i.e. Plant Derived Thyroid Hormone Analogs) metabolic pathway. qRT-PCR of selected genes suggested their participation in the transport and metabolism of iodine compounds, biosynthesis of primary and secondary metabolites, PDTHA pathway and flowering induction
    corecore