515 research outputs found

    Confocal Laser Scanning Microscopic Studies on Alveolar Bone Remodeling with Orthodontic Tooth Movement and Retention

    Get PDF
    Alveolar bone reconstruction in growing dog during the retention period following orthodontic tooth movement was studied. Three beagle dogs (8-10 kg body weight, about one-year-old) were used and two of the animals were subjected to histological observation. The upper 2nd and lower 3rd premolars on both sides were extracted prior to the orthodontic treatments. After a healing period of one month, the upper 3rd premolar and the lower 4th premolar on the right side were moved mesially with a conventional orthodontic force for 8 weeks, and then retained in their new position for 4 weeks. The contralateral corresponding premolars were used as control. The alveolar bone was double-labeled with tetracycline (TC) during the movement and calcein (Cal) during the retention period. Alveolar bone structure and labeling patterns were examined by contact microradiography, conventional fluorescence microscopy, and confocal laser scanning microscopy (CLSM). Optimizing the separation of TC and Cal labelings in the alveolar bone was attained by the simultaneous use of ultraviolet (364 nm) and argon (488 nm) laser sources for excitation of TC and Cal, respectively. Cal labeling, indicative of new bone deposition showed two distinct patterns: lamination at the periodontal surface and rings circumscribing the vascular canal. The cementum surface also exhibited active deposition during the experimental period. Bone formation was affected by slight changes in magnitude and direction of orthodontic or occlusal forces. CLSM is valuable in deciphering the process of alveolar bone remodeling

    Gβγ subunits inhibit Epac-induced melanoma cell migration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently we reported that activation of Epac1, an exchange protein activated by cAMP, increases melanoma cell migration via Ca <sup>2+ </sup>release from the endoplasmic reticulum (ER). G-protein βγ subunits (Gβγ) are known to act as an independent signaling molecule upon activation of G-protein coupled receptor. However, the role of Gβγ in cell migration and Ca <sup>2+ </sup>signaling in melanoma has not been well studied. Here we report that there is crosstalk of Ca <sup>2+ </sup>signaling between Gβγ and Epac in melanoma, which plays a role in regulation of cell migration.</p> <p>Methods</p> <p>SK-Mel-2 cells, a human metastatic melanoma cell line, were mainly used in this study. Intracellular Ca <sup>2+ </sup>was measured with Fluo-4AM fluorescent dyes. Cell migration was examined using the Boyden chambers.</p> <p>Results</p> <p>The effect of Gβγ on Epac-induced cell migration was first examined. Epac-induced cell migration was inhibited by mSIRK, a Gβγ -activating peptide, but not its inactive analog, L9A, in SK-Mel-2 cells. Guanosine 5', α-β-methylene triphosphate (Gp(CH2)pp), a constitutively active GTP analogue that activates Gβγ, also inhibited Epac-induced cell migration. In addition, co-overexpression of β1 and γ2, which is the major combination of Gβγ, inhibited Epac1-induced cell migration. By contrast, when the C-terminus of β adrenergic receptor kinase (βARK-CT), an endogenous inhibitor for Gβγ, was overexpressed, mSIRK's inhibitory effect on Epac-induced cell migration was negated, suggesting the specificity of mSIRK for Gβγ. We next examined the effect of mSIRK on Epac-induced Ca <sup>2+ </sup>response. When cells were pretreated with mSIRK, but not with L9A, 8-(4-Methoxyphenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (8-pMeOPT), an Epac-specific agonist, failed to increase Ca <sup>2+ </sup>signal. Co-overexpression of β1 and γ2 subunits inhibited 8-pMeOPT-induced Ca <sup>2+ </sup>elevation. Inhibition of Gβγ with βARK-CT or guanosine 5'-O-(2-thiodiphosphate) (GDPβS), a GDP analogue that inactivates Gβγ, restored 8-pMeOPT-induced Ca <sup>2+ </sup>elevation even in the presence of mSIRK. These data suggested that Gβγ inhibits Epac-induced Ca <sup>2+ </sup>elevation. Subsequently, the mechanism by which Gβγ inhibits Epac-induced Ca <sup>2+ </sup>elevation was explored. mSIRK activates Ca <sup>2+ </sup>influx from the extracellular space. In addition, W-5, an inhibitor of calmodulin, abolished mSIRK's inhibitory effects on Epac-induced Ca <sup>2+ </sup>elevation, and cell migration. These data suggest that, the mSIRK-induced Ca <sup>2+ </sup>from the extracellular space inhibits the Epac-induced Ca <sup>2+ </sup>release from the ER, resulting suppression of cell migration.</p> <p>Conclusion</p> <p>We found the cross talk of Ca <sup>2+ </sup>signaling between Gβγ and Epac, which plays a major role in melanoma cell migration.</p

    Calpain-mediated degradation of p35 to p25 in postmortem human and rat brains

    Get PDF
    AbstractTau in Alzheimer neurofibrillary tangles has been shown to be hyperphosphorylated and CDK5, GSK3, MAP kinase and SAP kinases are the candidate kinases for the phosphorylation of tau. Recently, it was reported that the conversion of p35, the activator of CDK5, to p25 was upregulated in Alzheimer’s disease (AD) brains, and that p35 is cleaved to yield p25 by calpain. Here we show that p35 is rapidly cleaved to p25 in rat and human brains within a short postmortem delay and that the conversion of p35 to p25 is partially dependent on calpain activity. Immunoblot analysis of brains prepared from patients with AD or age-matched control individuals with a short postmortem delay revealed no specific increase in the levels of p25 in AD brains, whereas the levels of active form of calpain were increased in AD brains compared to the those in controls. These observations suggest that the conversion of p35 to p25 is a postmortem degradation event and may not be upregulated in AD brains

    Factors affecting the mesothelioma detection rate within national and international epidemiological studies: insights from Scottish linked cancer registry-mortality data

    Get PDF
    ICD-9 code 163 (malignant neoplasm of pleura) listed as underlying cause of death detected only 40% of Scottish mesothelioma cases (all body sites) from the cancer registry in 1981–1999. This is lower than both the previously published 55% figure, derived from UK mesothelioma register data 1986–1991, which is based on any mention of mesothelioma on death certificates, cross-referenced to cancer registry data, and the 44% figure derived from Scottish mortality data 1981–1999, which captured any mention of mesothelioma on the death certificate. Detection from cancer registry data increased to 75% under ICD-10 in Scotland, confirming earlier predictions of the benefit of ICD-10's more specific mesothelioma codes. Including the accidental poisoning codes E866.4 (ICD-9) and X49 (ICD-10), covering poisoning by ‘unspecified' and ‘other' causes, which appear to have been used as coding surrogates for mesothelioma when asbestos exposure was explicitly mentioned in deaths suggestive of a mesothelioma, and which are recorded as the underlying cause of death in 4–7% of mesotheliomas, may improve the mesothelioma detection rate in future epidemiological studies

    Correlation effects during liquid infiltration into hydrophobic nanoporous mediums

    Full text link
    Correlation effects arising during liquid infiltration into hydrophobic porous medium are considered. On the basis of these effects a mechanism of energy absorption at filling porous medium by nonwetting liquid is suggested. In accordance with this mechanism, the absorption of mechanical energy is a result expenditure of energy for the formation of menisci in the pores on the shell of the infinite cluster and expenditure of energy for the formation of liquid-porous medium interface in the pores belonging to the infinite cluster of filled pores. It was found that in dependences on the porosity and, consequently, in dependences on the number of filled pores neighbors, the thermal effect of filling can be either positive or negative and the cycle of infiltration-defiltration can be closed with full outflow of liquid. It can occur under certain relation between percolation properties of porous medium and the energy characteristics of the liquid-porous medium interface and the liquid-gas interface. It is shown that a consecutive account of these correlation effects and percolation properties of the pores space during infiltration allow to describe all experimental data under discussion

    Calcium-responsive transactivator (CREST) protein shares a set of structural and functional traits with other proteins associated with amyotrophic lateral sclerosis

    Get PDF
    Background Mutations in calcium-responsive transactivator (CREST) encoding gene have been recently linked to ALS. Similar to several proteins implicated in ALS, CREST contains a prion-like domain and was reported to be a component of paraspeckles. Results We demonstrate that CREST is prone to aggregation and co-aggregates with FUS but not with other two ALS-linked proteins, TDP-43 and TAF15, in cultured cells. Aggregation of CREST affects paraspeckle integrity, probably by trapping other paraspeckle proteins within aggregates. Like several other ALS-associated proteins, CREST is recruited to induced stress granules. Neither of the CREST mutations described in ALS alters its subcellular localization, stress granule recruitment or detergent solubility; however Q388stop mutation results in elevated steady-state levels and more frequent nuclear aggregation of the protein. Both wild-type protein and its mutants negatively affect neurite network complexity of unstimulated cultured neurons when overexpressed, with Q388stop mutation being the most deleterious. When overexpressed in the fly eye, wild-type CREST or its mutants lead to severe retinal degeneration without obvious differences between the variants. Conclusions Our data indicate that CREST and certain other ALS-linked proteins share several features implicated in ALS pathogenesis, namely the ability to aggregate, be recruited to stress granules and alter paraspeckle integrity. A change in CREST levels in neurons which might occur under pathological conditions would have a profound negative effect on neuronal homeostasis. Keywords: Amyotrophic lateral sclerosis (ALS); Calcium-responsive transactivator (CREST); SS18L1; Fused in sarcoma (FUS); TAR DNA‐binding protein 43 (TDP‐43); Protein aggregation; Stress granule; Neurodegeneration; Paraspeckle; Nuclear enriched abundant transcript 1 (NEAT1); Transgenic fl

    Phosphorylation does not prompt, nor prevent, the formation of alpha-synuclein toxic species in a rat model of Parkinson's disease

    Get PDF
    Phosphorylation is involved in numerous neurodegenerative diseases. In particular, alpha-synuclein is extensively phosphorylated in aggregates in patients suffering from synucleinopathies. However, the share of this modification in the events that lead to the conversion of alpha-synuclein to aggregated toxic species needed to be clarified. The rat model that we developed through rAAV2/6-mediated expression of alpha-synuclein demonstrates a correlation between neurodegeneration and formation of small filamentous alpha-synuclein aggregates. A mutation preventing phosphorylation (S129A) significantly increases alpha-synuclein toxicity and leads to enhanced formation of beta-sheet-rich, proteinase K-resistant aggregates, increased affinity for intracellular membranes, a disarrayed network of neurofilaments and enhanced alpha-synuclein nuclear localization. The expression of a mutation mimicking phosphorylation (S129D) does not lead to dopaminergic cell loss. Nevertheless, fewer but larger aggregates are formed, and signals of apoptosis are also activated in rats expressing the phosphorylation-mimicking form of alpha-synuclein. These observations strongly suggest that phosphorylation does not play an active role in the accumulation of cytotoxic pre-inclusion aggregates. Unexpectedly, the study also demonstrates that constitutive expression of phosphorylation-mimicking forms of alpha-synuclein does not protect from neurodegeneration. The role of phosphorylation at Serine 129 in the early phase of Parkinson's disease is examined, which brings new perspective to therapeutic approaches focusing on the modulation of kinases/phosphatases activity to control alpha-synuclein toxicity

    The links between health-related behaviors and life satisfaction in elderly individuals who prefer institutional living

    Get PDF
    BACKGROUND: Life satisfaction among residents of institutions is becoming an important issue in a rapidly aging population. The aim of this cross-sectional study was to investigate the links between life satisfaction and health-related behaviors amongst functionally independent elderly people who prefer institutional living in İstanbul, Turkey. METHODS: The socio-demographic characteristics, health-related behaviors, leisure-time activities and fall histories of 133 residents of an institution in Istanbul were assessed by a structured questionnaire during face-to-face interviews. A validated life-satisfaction index questionnaire (LSI-A) was completed. RESULTS: The mean age of the study group was 73.9 ± 8.0 (range 60–90 years). Within the group, 22.6% had never married and 14.3% had university degrees. The majority (71.4%) were in the low income bracket. The overall mean LSI-A score was 20.3 ± 5.9. Participants who declared moderate/high income levels had a significantly higher mean LSI-A score than those in the low-income bracket (p = 0.009). Multivariate analysis of the data suggested that leisure-time activities and participation in regular physical activities are significant predictors of LSI-A scores (R(2): 0.112; p = 0.005 and p = 0.02, respectively). CONCLUSION: The findings imply that regular physical activity and leisure-time activities are significantly related to life satisfaction among residents in institutions. Participation in physical activity and leisure-time activity programs may help to improve the life satisfaction of elderly people living in institutions

    Distinct glutaminyl cyclase expression in Edinger–Westphal nucleus, locus coeruleus and nucleus basalis Meynert contributes to pGlu-Aβ pathology in Alzheimer’s disease

    Get PDF
    Glutaminyl cyclase (QC) was discovered recently as the enzyme catalyzing the pyroglutamate (pGlu or pE) modification of N-terminally truncated Alzheimer’s disease (AD) Aβ peptides in vivo. This modification confers resistance to proteolysis, rapid aggregation and neurotoxicity and can be prevented by QC inhibitors in vitro and in vivo, as shown in transgenic animal models. However, in mouse brain QC is only expressed by a relatively low proportion of neurons in most neocortical and hippocampal subregions. Here, we demonstrate that QC is highly abundant in subcortical brain nuclei severely affected in AD. In particular, QC is expressed by virtually all urocortin-1-positive, but not by cholinergic neurons of the Edinger–Westphal nucleus, by noradrenergic locus coeruleus and by cholinergic nucleus basalis magnocellularis neurons in mouse brain. In human brain, QC is expressed by both, urocortin-1 and cholinergic Edinger–Westphal neurons and by locus coeruleus and nucleus basalis Meynert neurons. In brains from AD patients, these neuronal populations displayed intraneuronal pE-Aβ immunoreactivity and morphological signs of degeneration as well as extracellular pE-Aβ deposits. Adjacent AD brain structures lacking QC expression and brains from control subjects were devoid of such aggregates. This is the first demonstration of QC expression and pE-Aβ formation in subcortical brain regions affected in AD. Our results may explain the high vulnerability of defined subcortical neuronal populations and their central target areas in AD as a consequence of QC expression and pE-Aβ formation
    corecore