299 research outputs found

    Structural insights into tetraspanin CD9 function

    Get PDF
    Umeda, R., Satouh, Y., Takemoto, M. et al. Structural insights into tetraspanin CD9 function. Nat Commun 11, 1606 (2020). https://doi.org/10.1038/s41467-020-15459-

    Long-Term Outcome of Proton Therapy and Carbon-Ion Therapy for Large (T2a–T2bN0M0) Non–Small-Cell Lung Cancer

    Get PDF
    IntroductionAlthough many reports have shown the safety and efficacy of stereotactic body radiotherapy (SBRT) for T1N0M0 non–small-cell lung cancer (NSCLC), it is rather difficult to treat T2N0M0 NSCLC, especially T2b (>5 cm) tumor, with SBRT. Our hypothesis was that particle therapy might be superior to SBRT in T2 patients. We evaluated the clinical outcome of particle therapy for T2a/bN0M0 NSCLC staged according to the 7th edition of the International Union Against Cancer (UICC) tumor, node, metastasis classification.MethodsFrom April 2003 to December 2009, 70 histologically confirmed patients were treated with proton (n = 43) or carbon-ion (n = 27) therapy according to institutional protocols. Forty-seven patients had a T2a tumor and 23 had a T2b tumor. The total dose and fraction (fr) number were 60 (Gray equivalent) GyE/10 fr in 20 patients, 52.8 GyE/4 fr in 16, 66 GyE/10 fr in 16, 80 GyE/20 fr in 14, and other in four patients, respectively. Toxicities were scored according to the Common Terminology Criteria for Adverse Events, Version 4.0.ResultsThe median follow-up period for living patients was 51 months (range, 24–103). For all 70 patients, the 4-year overall survival, local control, and progression-free survival rates were 58% (T2a, 53%; T2b, 67%), 75% (T2a, 70%; T2b, 84%), and 46% (T2a, 43%; T2b, 52%), respectively, with no significant differences between the two groups. The 4-year regional recurrence rate was 17%. Grade 3 pulmonary toxicity was observed in only two patients.ConclusionParticle therapy is well tolerated and effective for T2a/bN0M0 NSCLC. To further improve treatment outcome, adjuvant chemotherapy seems a reasonable option, whenever possible

    Soft chromophore featured liquid porphyrins and their utilization toward liquid electret applications

    Get PDF
    Optoelectronically active viscous liquids are ideal for fabricating foldable/stretchable electronics owing to their excellent deformability and predictable π-unit-based optoelectronic functions, which are independent of the device shape and geometry. Here we show, unprecedented 'liquid electret' devices that exhibit mechanoelectrical and electroacoustic functions, as well as stretchability, have been prepared using solvent-free liquid porphyrins. The fluidic nature of the free-base alkylated-tetraphenylporphyrins was controlled by attaching flexible and bulky branched alkyl chains at different positions. Furthermore, a subtle porphyrin ring distortion that originated from the bulkiness of alkyl chains was observed. Its consequences on the electronic perturbation of the porphyrin-unit were precisely elucidated by spectroscopic techniques and theoretical modelling. This molecular design allows shielding of the porphyrin unit by insulating alkyl chains, which facilitates its corona-charged state for a long period under ambient conditions

    Antitumor Activity of Lenvatinib (E7080): An Angiogenesis Inhibitor That Targets Multiple Receptor Tyrosine Kinases in Preclinical Human Thyroid Cancer Models

    Get PDF
    Inhibition of tumor angiogenesis by blockading the vascular endothelial growth factor (VEGF) signaling pathway is a promising therapeutic strategy for thyroid cancer. Lenvatinib mesilate (lenvatinib) is a potent inhibitor of VEGF receptors (VEGFR1-3) and other prooncogenic and prooncogenic receptor tyrosine kinases, including fibroblast growth factor receptors (FGFR1-4), platelet derived growth factor receptor (PDGFR ), KIT, and RET. We examined the antitumor activity of lenvatinib against human thyroid cancer xenograft models in nude mice. Orally administered lenvatinib showed significant antitumor activity in 5 differentiated thyroid cancer (DTC), 5 anaplastic thyroid cancer (ATC), and 1 medullary thyroid cancer (MTC) xenograft models. Lenvatinib also showed antiangiogenesis activity against 5 DTC and 5 ATC xenografts, while lenvatinib showed in vitro antiproliferative activity against only 2 of 11 thyroid cancer cell lines: that is, RO82-W-1 and TT cells. Western blot analysis showed that cultured RO82-W-1 cells overexpressed FGFR1 and that lenvatinib inhibited the phosphorylation of FGFR1 and its downstream effector FRS2. Lenvatinib also inhibited the phosphorylation of RET with the activated mutation C634W in TT cells. These data demonstrate that lenvatinib provides antitumor activity mainly via angiogenesis inhibition but also inhibits FGFR and RET signaling pathway in preclinical human thyroid cancer models

    Characterization of sulfur-compound metabolism underlying wax-ester fermentation in Euglena gracilis

    Get PDF
    Euglena gracilis is a microalga, which has been used as a model organism for decades. Recent technological advances have enabled mass cultivation of this species for industrial applications such as feedstock in nutritional foods and cosmetics. E. gracilis degrades its storage polysaccharide (paramylon) under hypoxic conditions for energy acquisition by an oxygen-independent process and accumulates high amount of wax-ester as a by-product. Using this sequence of reactions referred to as wax-ester fermentation, E. gracilis is studied for its application in biofuel production. Although the wax-ester production pathway is well characterized, little is known regarding the biochemical reactions underlying the main metabolic route, especially, the existence of an unknown sulfur-compound metabolism implied by the nasty odor generation accompanying the wax-ester fermentation. In this study, we show sulfur-metabolomics of E. gracilis in aerobic and hypoxic conditions, to reveal the biochemical reactions that occur during wax-ester synthesis. Our results helped us in identifying hydrogen sulfide (H2S) as the nasty odor-producing component in wax-ester fermentation. In addition, the results indicate that glutathione and protein degrades during hypoxia, whereas cysteine, methionine, and their metabolites increase in the cells. This indicates that this shift of abundance in sulfur compounds is the cause of H2S synthesis
    corecore