28 research outputs found

    Truly chiral phonons in {\alpha}-HgS

    Full text link
    Chirality is a manifestation of the asymmetry inherent in nature. It has been defined as the symmetry breaking of the parity of static objects, and the definition was extended to dynamic motion such that true and false chiralities were distinguished. Recently, rotating, yet not propagating, atomic motions were predicted and observed in two-dimensional materials, and they were referred to as "chiral phonons" . A natural development would be the discovery of truly chiral phonons that propagate while rotating in three-dimensional materials. Here, we used circularly polarised Raman scattering and first-principles calculations to identify truly chiral phonons in chiral bulk crystals. This approach enabled us to determine the chirality of a crystal in a non-contact and non-destructive manner. In addition, we demonstrated that the law of the conservation of pseudo-angular momentum holds between circularly polarised photons and chiral phonons. These findings are expected to help develop ways for transferring the pseudo-angular momentum from photons to electron spins via the propagating chiral phonons in opto-phononic-spintronic devices

    Regulation of Epithelial Sodium Transport via Epithelial Na+ Channel

    Get PDF
    Renal epithelial Na+ transport plays an important role in homeostasis of our body fluid content and blood pressure. Further, the Na+ transport in alveolar epithelial cells essentially controls the amount of alveolar fluid that should be kept at an appropriate level for normal gas exchange. The epithelial Na+ transport is generally mediated through two steps: (1) the entry step of Na+ via epithelial Na+ channel (ENaC) at the apical membrane and (2) the extrusion step of Na+ via the Na+, K+-ATPase at the basolateral membrane. In general, the Na+ entry via ENaC is the rate-limiting step. Therefore, the regulation of ENaC plays an essential role in control of blood pressure and normal gas exchange. In this paper, we discuss two major factors in ENaC regulation: (1) activity of individual ENaC and (2) number of ENaC located at the apical membrane

    金星大気におけるCO2吸収の強度とその回転温度の場所的変化

    Get PDF
    京都大学0048新制・論文博士理学博士乙第2972号論理博第515号新制||理||224(附属図書館)UT51-61-I204(主査)教授 宮本 正太郎, 教授 川口 市郎, 教授 加藤 正二学位規則第5条第2項該当Kyoto UniversityDFA

    Studies Of The Martian North Polar Cap Before Vernal Equinox, 1975

    No full text
    Reanalysis of the observations of Mars made at the Hida Observatory in 1975 with a new image processing method is reported. Red filter images taken in the period before vernal equinox (areocentric longitude of the sun Ls=0 ffi ) revealed dark surface features at the northern high latitudes, while blue filter images taken at the same time showed the extensive polar hood. The latitude of the northernmost feature observed was about 67 ffi N. An extensive north polar cap, which is predicted by most of the existing models and observed with Viking, did not exist in our reanalyzed images obtained at the Hida Observatory in 1975. Key Words : planets, mars, polar cap I. INTRODUCTION Calculations using models of the deposition of CO 2 frost on the winter polar surface have predicted a northern frost cover extending to 50 ffi N latitude or so before vernal equinox (Narumi 1979; Lindner 1993; Pollack et al. 1993). However, in our analysis of the CCD observations of Mars taken at the Catal..

    Correlation of the asymmetrical retreat of the south polar cap and the polar layered terrain on Mars

    No full text

    Stress-Distribution Pattern Across the Glenohumeral Joint in Collegiate and Professional Baseball Players : A Computed Tomography Osteoabsorptiometry Study

    No full text
    Background: The influence of long-term loading conditions on the articular surfaces of the glenohumeral joint can be determined by measuring stress-distribution patterns. Long-term pitching activity changes the stress distribution across the glenohumeral joint surface; however, the influence of competitive level on stress-distribution patterns remains unclear. Purpose: To use computed tomography (CT) osteoabsorptiometry (CTOAM) to evaluate the distribution of subchondral bone density across the glenohumeral joint in collegiate and professional baseball players as well as to determine the effects of pitching activity on the articular surfaces. Study Design: Descriptive laboratory study. Methods: We evaluated 73 shoulders in 50 baseball players. CT imaging data were obtained from the dominant-side shoulder of 12 professional pitchers (PP group) and 15 professional fielders (PF group). CT imaging data were also obtained from both shoulders of 12 asymptomatic collegiate pitchers (CP group) and 11 collegiate fielders (CF group). The pattern of distribution of subchondral bone density across the articular surfaces of each glenohumeral joint was assessed by CTOAM. As a measure of bone density, the mean Hounsfield units (HU) were obtained for each joint surface, and the absolute values of the dominant shoulder were compared for each group. Results: Stress-distribution patterns over the articular surfaces differed between the dominant and nondominant sides in the CP group as well as between both collegiate groups versus the PP group. In the CP group, the mean HU of the humeral head surface were greater on the nondominant versus dominant side (P = .035). On the dominant side, the mean HU of the humeral head surface and glenoid were greater in the CP versus the PP group (P = .001 and .027, respectively). Conclusion: Stress distribution on the articular surface of the glenohumeral joint was affected by pitching ability and competitive level. Our analysis indicates that the traction force on the glenohumeral joint surface might be greater than compression force during pitching. Clinical Relevance: The present findings suggest that pitching activity results in low stress to the articular surfaces of the glenohumeral joint. This supports the notion that mechanical conditions play a crucial role in the etiology of disorders specific to pitching activity

    Changes in elbow joint contact area in symptomatic valgus instability of the elbow in baseball players

    No full text
    The aim of this study was to evaluate the joint contact area of the dominant side and that of the non-dominant side without valgus instability in symptomatic pitchers. Ten symptomatic elbow medial ulnar collateral ligament (UCL) deficient baseball pitchers participated in this study. Computed tomography (CT) data from the dominant and non-dominant elbows were obtained with and without elbow valgus stress. The CT imaging data of each elbow joint were reconstructed using a 3D reconstruction software package, and the radiocapitellar and ulnohumeral joint contact areas were calculated. The center of the contact area and the translation from the position without stress to the position with valgus stress were also calculated. With elbow valgus stress, the contact area changed, and the center of the radiocapitellar joint contact area translated significantly more laterally in the dominant elbow than in the non-dominant elbow (p = 0.0361). In addition, the center of the ulnohumeral joint contact area translated significantly more posteriorly in the dominant elbow than in the non-dominant elbow (p = 0.0413). These changes in contact areas could be the reason for cartilage injury at the posterior trochlea in pitchers with UCL deficiency
    corecore