42 research outputs found

    Miniaturization in x ray and gamma ray spectroscopy

    Get PDF
    The paper presents advances in two new sensor technologies and a miniaturized associated electronics technology which, when combined, can allow for very significant miniaturization and for the reduction of weight and power consumption in x-ray and gamma-ray spectroscopy systems: (1) Mercuric iodide (HgI2) x-ray technology, which allows for the first time the construction of truly portable, high-energy resolution, non-cryogenic x-ray fluorescence (XRF) elemental analyzer systems, with parameters approaching those of laboratory quality cryogenic instruments; (2) the silicon avalanche photodiode (APD), which is a solid-state light sensitive device with internal amplification, capable of uniquely replacing the vacuum photomultiplier tube in scintillation gamma-ray spectrometer applications, and offering substantial improvements in size, ruggedness, low power operation and energy resolution; and (3) miniaturized (hybridized) low noise, low power amplification and processing electronics, which take full advantage of the favorable properties of these new sensors and allow for the design and fabrication of advanced, highly miniaturized x-ray and gamma-ray spectroscopy systems. The paper also presents experimental results and examples of spectrometric systems currently under construction. The directions for future developments are discussed

    Performance and durability of HgI_2 X-ray detectors for space missions

    Get PDF
    Considerable progress has been achieved in HgI_2 detector fabrication technology and amplification electronics. An energy resolution of 198 eV (full width at half maximum) has been obtained for the Mn K_α line of 5.9 keV in a practical X-ray probe without the use of cryogenic cooling. Detectors prepared with Parylene-C encapsulation have demonstrated perfect reliability in two-year tests under high vacuum and temperature and bias cycling. Other HgI_2 detectors have been used to demonstrate proton-radiation-damage resistance to levels of 10^(12) protons/cm^2 at 10.7 MeV. It is concluded that HgI_2 detectors are suitable for the ordinary requirements of energy dispersive detectors in X-ray spectroscopy systems

    Advances in the development of encapsulants for mercuric iodide X-ray detectors

    Get PDF
    Advances in the development of protective impermeable encapsulants with high transparency to ultra-low-energy X-rays for use on HgI_2 X-ray detectors are reported. Various X-ray fluorescence spectra from coated detectors are presented. The X-ray absorption in the encapsulants has been analyzed using characteristic radiation from various elements. Results suggest that low-energy cutoffs for the detectors are not determined solely by the encapsulating coatings presently employed but are also influenced by the front electrode and surface effects, which can affect the local electric field or the surface recombination velocity. An energy resolution of 182 eV (FWHM) has been achieved for Ni L lines at 850 eV. Improved detector sensitivity to X-ray energies under 700 eV is demonstrated

    Low Energy X-Ray Spectra Measured with a Mercuric Iodide Energy Dispersive Spectrometer in a Scanning Electron Microscope

    Get PDF
    A mercuric iodide energy dispersive x-ray spectrometer, with Peltier cooling provided for the detector and input field effect transistor, has been developed and tested in a scanning electron microscope. X-ray spectra were obtained with the 15 keV electron beam. An energy resolution of 225 eV (FWHM) for Mn-Kα at 5.9 keV and 195 eV (FWHM) for Mg-K line at 1.25 keV has been measured. Overall system noise level was 175 eV (FWHM). The detector system characterization with a carbon target demonstrated good energy sensitivity at low energies and lack of significant spectral artifacts at higher energies

    The use of a mercuric iodide detector for X-ray fluorescence analysis in archaeometry

    No full text
    For about two decades, energy dispersive X-ray fluorescence (EDXRF) has been employed in Rome for the analysis of works of art. A short history of the applications of EDXRF to paintings and alloys is presented. Finally, the usefulness of mercuric iodide room-temperature semiconductor detectors in this field is shown

    Applications of non-cryogenic portable EDXRF systems in archaeometry

    No full text
    In this paper the most relevant developments in the realisation of portable Energy-Dispersive X-ray Fluorescence (EDXRF) equipments are discussed. In particular, the latest advances in non-cryogenic (Peltier cooled) X-ray detectors and miniaturised X-ray generators are shown. The energy resolution of the new detection systems is adequate to resolve the characteristic X-ray emission lines of contiguous elements. This small size and low power make the system ideal for portable instrumentation and have stimulated the development of small- and low-power X-ray generators which can be used for the excitation of fluorescence radiation in a broad energy range (5-40 keV). Finally, the use of EDXRF related to archaeometric research (pigments in ancient paintings and major elements in the metal alloys) is emphasised. Recent results obtained with new HgI2 and silicon PIN detector systems combined with miniaturised highly stable air-cooled X-ray generators are described

    Applications of non-cryogenic portable EDXRF systems in archaeometry

    No full text
    In this paper the most relevant developments in the realisation of portable Energy-Dispersive X-ray Fluorescence (EDXRF) equipments are discussed. In particular, the latest advances in non-cryogenic (Peltier cooled) X-ray detectors and miniaturised X-ray generators are shown. The energy resolution of the new detection systems is adequate to resolve the characteristic X-ray emission lines of contiguous elements. This small size and low power make the system ideal for portable instrumentation and have stimulated the development of small- and low-power X-ray generators which can be used for the excitation of fluorescence radiation in a broad energy range (5-40 keV). Finally, the use of EDXRF related to archaeometric research (pigments in ancient paintings and major elements in the metal alloys) is emphasised. Recent results obtained with new HgI2 and silicon PIN detector systems combined with miniaturised highly stable air-cooled X-ray generators are described
    corecore