30 research outputs found
Dioxins levels in human blood after implementation of measures against dioxin exposure in Japan
Background: Over the past few decades, the Japanese Ministry of the Environment has been biomonitoring dioxins in the general Japanese population and, in response to public concerns, has taken measures to reduce dioxin exposure. The objectives of this study were to assess the current dioxin dietary intake and corresponding body burden in the Japanese and compare Japanese dioxin data from 2011 to 2016 and 2002–2010 surveys. We also examined the relationship between blood dioxins and health parameters/clinical biomarkers.
Methods: From 2011 to 2016, cross-sectional dioxin surveys were conducted on 490 Japanese (242 males and 248 females, aged 49.9 ± 7.6 years) from 15 Japanese prefectures. Blood (n = 490) and food samples (n = 90) were measured for 29 dioxin congeners including polychlorinated dibenzo-para-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and coplanar polychlorinated biphenyls (Co-PCBs) using gas chromatography coupled with high-resolution mass spectrometry. Using the 2006 World Health Organization toxic equivalence factors, the toxic equivalents (TEQs) were calculated. Clinical biomarkers and anthropometric parameters were also measured and information on lifestyle behaviours collected. Data imputations were applied to account for blood dioxins below the detection limit.
Results: The median (95% confidence interval or CI) blood levels and dioxin dietary intake was respectively 9.4 (8.8–9.9) pg TEQ/g lipid and 0.3 (0.2–0.4) pg TEQ/kg body weight/day. The median blood dioxin level in the 2011–2016 survey was found to have decreased by 41.3% compared to the 2002–2010 surveys. Participants who were older were found to be more likely to have higher dioxin levels. Blood dioxins were also significantly associated with body mass index, triglycerides, docosahexaenoic acid, eicosapentaenoic acid, and dihomo-gamma-linoleic acid levels in blood. Furthermore, associations between blood dioxin and dietary dioxin intake were evident in the unadjusted models. However, after adjusting for confounders, blood dioxins were not found to be associated with dietary dioxin intake.
Conclusions: Blood dioxin levels declined over the past decade. This study showed that the measures and actions undertaken in Japan have possibly contributed to these reductions in the body burden of dioxins in the Japanese population
Dietary intake of methylmercury by 0–5 years children using the duplicate diet method in Japan
Background: The developing brains are sensitive to methylmercury (MeHg). However, the exposure to MeHg in baby foods and toddler meals remains unknown. This study aimed to determine MeHg intake from baby food or toddler meals, and to investigate the relationship with child hair total mercury (THg). Methods: A total of 3 days of 24-hour dietary diet and hair samples were collected from 260 consenting children aged 0–5 years. We measured the concentrations of THg and MeHg in the diet and THg in the hair. Results: The results of measuring THg were below both the method detection and method quantification limits or either of both in powdered milk (93.8%), 5–6 months (53.3%), and 7–8 months (39.5%). The median daily THg intake was 20.3 (95% confidence interval 0.72–232.5) ng/kgbw. MeHg was not detected in 213 samples with dietary THg concentrations below 1 ng/g. The MeHg concentration with THg concentrations of 1 ng/g or higher was 1.70 (0.87–6.21) ng/g, and MeHg percentage in THg was 90.0%. To estimate MeHg intake, we multiplied the THg concentration by 90.0%, resulting in an estimated MeHg intake of 18.3 (0.65–209.2) ng/kgbw/day. The THg in children’s hair was 1.05 (0.31–3.96) ppm, and a weak positive correlation was observed between hair THg and dietary MeHg (r = 0.170). Conclusions: This study highlights the accurate estimation of MeHg intake in children using a duplicate method. Japanese children consume fish, the MeHg intakes exceeded the reference dose and/or provisional tolerable weekly intake in several children. Further discussion based on epidemiological data is required
Intra- and Inter-Day Element Variability in Human Breast Milk: Pilot Study
For infants in the first months of life, breast milk is a complete source of nutrition; however, it can also contain elements that are harmful to the infant. It is therefore critical for infant health to characterize breast milk. The aim of this study was to determine the intra- and inter-day variation of elements in breast milk, for which there is currently limited information, as a pilot study for a larger study. Firstly, we developed a simple and robust analytical method for the determination of multiple elements in breast milk. It was accurate (accuracy ranged from 98% to 107%) for measurement of 26 elements in breast milk by quadrupole inductively coupled plasma-mass spectrometry. Intra- and inter-day variation of elements, protein, and fat in breast milk was determined by analyzing breast milk collected from 11 women at 12 sampling points over three days and calculating intraclass correlation coefficients. Intraclass correlation coefficients showed that while some elements were consistent across time points (e.g., Sr, Ca, and Cu), others showed very high variability (e.g., As, Cd, and Ni). Correlation analyses between elements in breast milk showed strong relationships between those including Fe and Mo, Ca and Sr, and Cd and Fe
Effects of intrauterine exposures to polychlorinated biphenyls, methylmercury, and lead on birth weight in Japanese male and female newborns
Abstract Background The effects of prenatal exposures to polychlorinated biphenyls (PCBs), methylmercury, and lead on birth weight remain disputable. The aim of this study was to investigate whether these chemicals affect birth weight of Japanese newborns, with special emphasis on determining whether these effects differ between males and females. Methods The subjects from Tohoku Study of Child Development, which was designed to examine the developmental effects of prenatal exposures to such hazardous chemicals, were 489 mother-newborn pairs with complete data including smoking habit during pregnancy. Results The mean birth weight of all newborns was 3083 (range, 2412–4240) g. The median values of biomarkers in cord blood were 46.0 (5th and 95th percentiles, 18.6–113.8) ng/g–lipid for total PCBs, 10.1 (4.3–22.4) ng/g for total mercury (THg), and 1.0 (0.6-1.7) μg/dL for lead. The birth weight was significantly heavier in the 252 male newborns than in the 237 female ones. A negative association between total PCBs and birth weight was observed in both male and female newborns, even after adjusting for possible confounders. However, a negative association of THg with birth weight was found only in the male newborns. There was no significant relationship between lead and birth weight in both groups. Conclusion Birth weight appears to be affected by prenatal PCB exposure in Japanese male and female newborns, and the effect of methylmercury exposure on male fetal growth may be stronger than that for females. This implication is that the effects on fetal growth should be assessed in males and females separately
A methodological consideration for blood lead concentrations obtained from the earlobe in Japanese adults occupationally unexposed to lead
Abstract Background Neuropsychological effects of considerably low levels of lead exposure are observed in children, and a reliable and possibly painless technique that can detect such levels is required for the assessment of such exposure. We examined whether the blood lead (BPb) concentrations obtained from the earlobe were as valid and useful as those from the median cubital vein. Methods Paired blood samples were collected from the earlobe and cubital vein of 112 Japanese participants occupationally unexposed to lead, and the BPb levels were determined using ICP-MS. Results The limit of detection of BPb for the ICP-MS method was 0.015 μg/dL, and there was no participant with a BPb level below this limit. The median values of BPb concentrations were 0.91 (range, 0.41–2.48) μg/dL for earlobe blood using a 175-μL capillary tube and 0.85 (0.35–2.39) μg/dL for venous blood using a 5-mL vacuum tube. There was a significant correlation between the earlobe BPb levels and cubital vein BPb levels (Spearman rank correlation r S = 0.941), though the earlobe BPb levels were significantly higher than the cubital vein BPb levels. Most of the participants regarded earlobe puncture as a painless method. Conclusions These data suggest that earlobe BPb levels can be used to assess lead exposure in children. Blood collection using a capillary tube should be done carefully and promptly because slow withdrawal may lead to measurement bias
Dioxins levels in human blood after implementation of measures against dioxin exposure in Japan
Abstract Background Over the past few decades, the Japanese Ministry of the Environment has been biomonitoring dioxins in the general Japanese population and, in response to public concerns, has taken measures to reduce dioxin exposure. The objectives of this study were to assess the current dioxin dietary intake and corresponding body burden in the Japanese and compare Japanese dioxin data from 2011 to 2016 and 2002–2010 surveys. We also examined the relationship between blood dioxins and health parameters/clinical biomarkers. Methods From 2011 to 2016, cross-sectional dioxin surveys were conducted on 490 Japanese (242 males and 248 females, aged 49.9 ± 7.6 years) from 15 Japanese prefectures. Blood (n = 490) and food samples (n = 90) were measured for 29 dioxin congeners including polychlorinated dibenzo-para-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and coplanar polychlorinated biphenyls (Co-PCBs) using gas chromatography coupled with high-resolution mass spectrometry. Using the 2006 World Health Organization toxic equivalence factors, the toxic equivalents (TEQs) were calculated. Clinical biomarkers and anthropometric parameters were also measured and information on lifestyle behaviours collected. Data imputations were applied to account for blood dioxins below the detection limit. Results The median (95% confidence interval or CI) blood levels and dioxin dietary intake was respectively 9.4 (8.8–9.9) pg TEQ/g lipid and 0.3 (0.2–0.4) pg TEQ/kg body weight/day. The median blood dioxin level in the 2011–2016 survey was found to have decreased by 41.3% compared to the 2002–2010 surveys. Participants who were older were found to be more likely to have higher dioxin levels. Blood dioxins were also significantly associated with body mass index, triglycerides, docosahexaenoic acid, eicosapentaenoic acid, and dihomo-gamma-linoleic acid levels in blood. Furthermore, associations between blood dioxin and dietary dioxin intake were evident in the unadjusted models. However, after adjusting for confounders, blood dioxins were not found to be associated with dietary dioxin intake. Conclusions Blood dioxin levels declined over the past decade. This study showed that the measures and actions undertaken in Japan have possibly contributed to these reductions in the body burden of dioxins in the Japanese population
Health Risk Assessment and Source Apportionment of Mercury, Lead, Cadmium, Selenium, and Manganese in Japanese Women: An Adjunct Study to the Japan Environment and Children’s Study
Toxic element pollution is a serious global health concern that has been attracting considerable research. In this study, we elucidated the major routes of exposure to three toxic elements (mercury, cadmium, and lead) and two essential elements (manganese and selenium) through diet, soil, house dust, and indoor air and assessed the potential health risks from these elements on women from the coastal area of Miyagi prefecture, Japan. Twenty-four-hour duplicate diet, house dust, soil, and indoor air samples were collected from 37 participants. Cd, Pb, Mn, and Se concentrations were measured using inductively coupled plasma mass spectrometry, and Hg concentrations using cold vapor atomic absorption spectrometry. We found that soil and house dust were the primary reservoirs of these elements. Diet contributed most strongly to the daily intake of these elements, with mean values of 0.72, 0.25, 0.054, 47, and 0.94 μg/kg/day for Hg, Cd, Pb, Mn, and Se, respectively. The mean hazard quotient of Hg was 1.53, indicating a high potential health risk from Hg exposure in daily lives. The intakes of other elements were below the tolerable limits. Future studies with a larger sample size are warranted to confirm our findings
Global DNA Methylation in Cord Blood as a Biomarker for Prenatal Lead and Antimony Exposures
DNA methylation is an epigenetic mechanism for gene expression modulation and can be used as a predictor of future disease risks. A prospective birth cohort study was performed to clarify the effects of neurotoxicants on child development, namely, the Tohoku Study of Child Development, in Japan. This study aimed to evaluate the association of prenatal exposure to five toxic metals—arsenic, cadmium, mercury, lead (Pb), antimony (Sb), and polychlorinated biphenyls (PCBs, N = 166)—with global DNA methylation in umbilical cord blood DNA. DNA methylation markers, 5-methyl-2′-deoxycytidine (mC) and 5-hydroxymethyl-2′-deoxycytidine (hmC), were determined using liquid chromatography-tandem mass spectrometry. The mC content in cord blood DNA was positively correlated with Pb and Sb levels (r = 0.435 and 0.288, respectively) but not with cord blood PCBs. We also observed significant positive correlations among Pb levels, maternal age, and hmC content (r = 0.155 and 0.243, respectively). The multiple regression analysis among the potential predictors demonstrated consistent positive associations between Pb and Sb levels and mC and hmC content. Our results suggest that global DNA methylation is a promising biomarker for prenatal exposure to Pb and Sb
Global DNA Methylation in Cord Blood as a Biomarker for Prenatal Lead and Antimony Exposures
DNA methylation is an epigenetic mechanism for gene expression modulation and can be used as a predictor of future disease risks. A prospective birth cohort study was performed to clarify the effects of neurotoxicants on child development, namely, the Tohoku Study of Child Development, in Japan. This study aimed to evaluate the association of prenatal exposure to five toxic metals—arsenic, cadmium, mercury, lead (Pb), antimony (Sb), and polychlorinated biphenyls (PCBs, N = 166)—with global DNA methylation in umbilical cord blood DNA. DNA methylation markers, 5-methyl-2′-deoxycytidine (mC) and 5-hydroxymethyl-2′-deoxycytidine (hmC), were determined using liquid chromatography-tandem mass spectrometry. The mC content in cord blood DNA was positively correlated with Pb and Sb levels (r = 0.435 and 0.288, respectively) but not with cord blood PCBs. We also observed significant positive correlations among Pb levels, maternal age, and hmC content (r = 0.155 and 0.243, respectively). The multiple regression analysis among the potential predictors demonstrated consistent positive associations between Pb and Sb levels and mC and hmC content. Our results suggest that global DNA methylation is a promising biomarker for prenatal exposure to Pb and Sb