18 research outputs found

    Degradation of Phosphorylated p53 by Viral Protein-ECS E3 Ligase Complex

    Get PDF
    p53-signaling is modulated by viruses to establish a host cellular environment advantageous for their propagation. The Epstein-Barr virus (EBV) lytic program induces phosphorylation of p53, which prevents interaction with MDM2. Here, we show that induction of EBV lytic program leads to degradation of p53 via an ubiquitin-proteasome pathway independent of MDM2. The BZLF1 protein directly functions as an adaptor component of the ECS (Elongin B/C-Cul2/5-SOCS-box protein) ubiquitin ligase complex targeting p53 for degradation. Intringuingly, C-terminal phosphorylation of p53 resulting from activated DNA damage response by viral lytic replication enhances its binding to BZLF1 protein. Purified BZLF1 protein-associated ECS could be shown to catalyze ubiquitination of phospho-mimetic p53 more efficiently than the wild-type in vitro. The compensation of p53 at middle and late stages of the lytic infection inhibits viral DNA replication and production during lytic infection, suggesting that the degradation of p53 is required for efficient viral propagation. Taken together, these findings demonstrate a role for the BZLF1 protein-associated ECS ligase complex in regulation of p53 phosphorylated by activated DNA damage signaling during viral lytic infection

    Efficient production of infectious viruses requires enzymatic activity of Epstein-Barr virus protein kinase

    Get PDF
    AbstractThe Epstein-Barr virus (EBV) BGLF4 gene product is the only protein kinase encoded by the virus genome. In order to elucidate its physiological roles in viral productive replication, we here established a BGLF4-knockout mutant and a revertant virus. While the levels of viral DNA replication of the deficient mutant were equivalent to those of the wild-type and the revertant, virus production was significantly impaired. Expression of the BGLF4 protein in trans fully complemented the low yield of the mutant virus, while expression of a kinase-dead (K102I) form of the protein failed to restore the virus titer. These results demonstrate that BGLF4 plays a significant role in production of infectious viruses and that the kinase activity is crucial

    Direct Substrate Identification with an Analog Sensitive (AS) Viral Cyclin-Dependent Kinase (v-Cdk)

    No full text
    Viral cyclin-dependent kinases (v-Cdks) functionally emulate their cellular Cdk counterparts. Such viral mimicry is an established phenomenon that we extend here through chemical genetics. Kinases contain gatekeeper residues that limit the size of molecules that can be accommodated within the enzyme active site. Mutating gatekeeper residues to smaller amino acids allows larger molecules access to the active site. Such mutants can utilize bio-orthoganol ATPs for phosphate transfer and are inhibited by compounds ineffective against the wild type protein, and thus are referred to as analog-sensitive (AS) kinases. We identified the gatekeeper residues of the v-Cdks encoded by Epstein–Barr virus (EBV) and human cytomegalovirus (HCMV) and mutated them to generate AS kinases. The AS-v-Cdks are functional and utilize different ATP derivatives with a specificity closely matching their cellular ortholog, AS-Cdk2. The AS derivative of the EBV v-Cdk was used to transfer a thiolated phosphate group to targeted proteins which were then purified through covalent capture and identified by mass spectrometry. Pathway analysis of these newly identified direct substrates of the EBV v-Cdk extends the potential influence of this kinase into all stages of gene expression (transcription, splicing, mRNA export, and translation). Our work demonstrates the biochemical similarity of the cellular and viral Cdks, as well as the utility of AS v-Cdks for substrate identification to increase our understanding of both viral infections and Cdk biology

    Homologous Recombinational Repair Factors Are Recruited and Loaded onto the Viral DNA Genome in Epstein-Barr Virus Replication Compartmentsâ–¿

    No full text
    Homologous recombination is an important biological process that facilitates genome rearrangement and repair of DNA double-strand breaks (DSBs). The induction of Epstein-Barr virus (EBV) lytic replication induces ataxia telangiectasia-mutated (ATM)-dependent DNA damage checkpoint signaling, leading to the clustering of phosphorylated ATM and Mre11/Rad50/Nbs1 (MRN) complexes to sites of viral genome synthesis in nuclei. Here we report that homologous recombinational repair (HRR) factors such as replication protein A (RPA), Rad51, and Rad52 as well as MRN complexes are recruited and loaded onto the newly synthesized viral genome in replication compartments. The 32-kDa subunit of RPA is extensively phosphorylated at sites in accordance with those with ATM. The hyperphosphorylation of RPA32 causes a change in RPA conformation, resulting in a switch from the catalysis of DNA replication to the participation in DNA repair. The levels of Rad51 and phosphorylated RPA were found to increase with the progression of viral productive replication, while that of Rad52 proved constant. Furthermore, biochemical fractionation revealed increases in levels of DNA-bound forms of these HRRs. Bromodeoxyuridine-labeled chromatin immunoprecipitation and PCR analyses confirmed the loading of RPA, Rad 51, Rad52, and Mre11 onto newly synthesized viral DNA, and terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling analysis demonstrated DSBs in the EBV replication compartments. HRR factors might be recruited to repair DSBs on the viral genome in viral replication compartments. RNA interference knockdown of RPA32 and Rad51 prevented viral DNA synthesis remarkably, suggesting that homologous recombination and/or repair of viral DNA genome might occur, coupled with DNA replication to facilitate viral genome synthesis

    The Late Promoter of the Human Cytomegalovirus Viral DNA Polymerase Processivity Factor Has an Impact on Delayed Early and Late Viral Gene Products but Not on Viral DNA Synthesisâ–¿

    No full text
    Transcription of the DNA polymerase processivity factor gene (UL44) of human cytomegalovirus initiates at three distinct start sites, which are differentially regulated during productive infection. Two of these start sites, the distal and proximal sites, are active at early times, and the middle start site is active at only late times after infection (F. Leach and E. S. Mocarski, J. Virol. 63:1783-1791, 1989). Compared to the wild type, UL44 gene expression was lower for recombinant viruses with the distal or the middle TATA element mutated. The transcripts initiating from the distal or middle start site facilitated late viral gene expression. The level of viral DNA synthesis was affected by mutation of the distal TATA element. In contrast, mutation of the middle TATA element did not affect the level of viral DNA synthesis, but it did affect significantly the level of late viral gene expression. Recombinant viruses with the distal or middle TATA element mutated grew more slowly than the wild type at both low and high multiplicities of infection. Reduced expression of the UL44 gene from the late middle viral promoter correlated with decreased late viral protein expression and decreased viral growth

    Phosphorylation of MCM4 at Sites Inactivating DNA Helicase Activity of the MCM4-MCM6-MCM7 Complex during Epstein-Barr Virus Productive Replication

    No full text
    Induction of Epstein-Barr virus (EBV) lytic replication blocks chromosomal DNA replication notwithstanding an S-phase-like cellular environment with high cyclin-dependent kinase (CDK) activity. We report here that the phosphorylated form of MCM4, a subunit of the MCM complex essential for chromosomal DNA replication, increases with progression of lytic replication, Thr-19 and Thr-110 being CDK2/CDK1 targets whose phosphorylation inactivates MCM4-MCM6-MCM7 (MCM4-6-7) complex-associated DNA helicase. Expression of EBV-encoded protein kinase (EBV-PK) in HeLa cells caused phosphorylation of these sites on MCM4, leading to cell growth arrest. In vitro, the sites of MCM4 of the MCM4-6-7 hexamer were confirmed to be phosphorylated with EBV-PK, with the same loss of helicase activity as with CDK2/cyclin A. Introducing mutations in the N-terminal six Ser and Thr residues of MCM4 reduced the inhibition by CDK2/cyclin A, while EBV-PK inhibited the helicase activities of both wild-type and mutant MCM4-6-7 hexamers, probably since EBV-PK can phosphorylate MCM6 and another site(s) of MCM4 in addition to the N-terminal residues. Therefore, phosphorylation of the MCM complex by redundant actions of CDK and EBV-PK during lytic replication might provide one mechanism to block chromosomal DNA replication in the infected cells through inactivation of DNA unwinding by the MCM4-6-7 complex

    N6-methyladenosine Modification of Hepatitis B Virus RNA in the Coding Region of HBx

    No full text
    N6-methyladenosine (m6A) is a post-transcriptional modification of RNA involved in transcript transport, degradation, translation, and splicing. We found that HBV RNA is modified by m6A predominantly in the coding region of HBx. The mutagenesis of methylation sites reduced the HBV mRNA and HBs protein levels. The suppression of m6A by an inhibitor or knockdown in primary hepatocytes decreased the viral RNA and HBs protein levels in the medium. These results suggest that the m6A modification of HBV RNA is needed for the efficient replication of HBV in hepatocytes

    A cis Element between the TATA Box and the Transcription Start Site of the Major Immediate-Early Promoter of Human Cytomegalovirus Determines Efficiency of Viral Replicationâ–¿

    No full text
    The promoter of the major immediate-early (MIE) genes of human cytomegalovirus (HCMV), also referred to as the CMV promoter, possesses a cis-acting element positioned downstream of the TATA box between positions −14 and −1 relative to the transcription start site (+1). We determined the role of the cis-acting element in viral replication by comparing recombinant viruses with the cis-acting element replaced with other sequences. Recombinant virus with the simian CMV counterpart replicated efficiently in human foreskin fibroblasts, as well as wild-type virus. In contrast, replacement with the murine CMV counterpart caused inefficient MIE gene transcription, RNA splicing, MIE and early viral gene expression, and viral DNA replication. To determine which nucleotides in the cis-acting element are required for efficient MIE gene transcription and splicing, we constructed mutations within the cis-acting element in the context of a recombinant virus. While mutations in the cis-acting element have only a minor effect on in vitro transcription, the effects on viral replication are major. The nucleotides at −10 and −9 in the cis-acting element relative to the transcription start site (+1) affect efficient MIE gene transcription and splicing at early times after infection. The cis-acting element also acts as a cis-repression sequence when the viral IE86 protein accumulates in the infected cell. We demonstrate that the cis-acting element has an essential role in viral replication
    corecore