3 research outputs found

    Reproducibility and sensitivity of detecting brain activity by simultaneous electroencephalography and near-infrared spectroscopy

    Get PDF
    The aims were (1) to determine the sensitivity and reproducibility to detect the hemodynamic responses and optical neuronal signals to brain stimulation by near-infrared spectroscopy (NIRS) and evoked potentials by electroencephalography (EEG) and (2) to test the effect of novel filters on the signal-to-noise ratio. This was achieved by simultaneous NIRS and EEG measurements in 15 healthy adults during visual stimulation. Each subject was measured three times on three different days. The sensitivity of NIRS to detect hemodynamic responses was 55.2% with novel filtering and 40% without. The reproducibility in single subjects was low. For the EEG, the sensitivity was 86.4% and the reproducibility 57.1%. An optical neuronal signal was not detected, although novel filtering considerably reduced nois

    Estimating and validating the interbeat intervals of the heart using near-infrared spectroscopy on the human forehead

    No full text
    In studies with near-infrared spectroscopy, the recorded signals contain information on the temporal interbeat intervals of the heart. If this cardiac information is needed exclusively and could directly be extracted, an additional electrocardiography device would be unnecessary. The aim was to estimate these intervals from signals measured with near-infrared spectroscopy with two novel approaches. In one approach, we model the heartbeat oscillations in these signals with a Fourier series where the coefficients and the fundamental frequency can continuously change over time. The time-dependent model parameters are estimated and used to calculate the interbeat intervals. The second approach uses empirical mode decomposition. The signal measured with near-infrared spectroscopy is empirically decomposed into a set of oscillatory components. The sum of a specific subset of them is an estimate of the pure heartbeat signal in which the diastolic peaks and consequential interbeat intervals are detected. We show in simultaneous electrocardiography and near-infrared spectroscopy measurements on 11 subjects (8 men and 3 woman with mean age 32.8 ± 8.1 yr), that the interbeat intervals (and the consequential pulse rate variability measures), estimated using the proposed approaches, are in high agreement with their correspondents from electrocardiography

    Reproducibility and sensitivity of detecting brain activity by simultaneous electroencephalography and near-infrared spectroscopy

    Full text link
    The aims were (1) to determine the sensitivity and reproducibility to detect the hemodynamic responses and optical neuronal signals to brain stimulation by near-infrared spectroscopy (NIRS) and evoked potentials by electroencephalography (EEG) and (2) to test the effect of novel filters on the signal-to-noise ratio. This was achieved by simultaneous NIRS and EEG measurements in 15 healthy adults during visual stimulation. Each subject was measured three times on three different days. The sensitivity of NIRS to detect hemodynamic responses was 55.2 % with novel filtering and 40 % without. The reproducibility in single subjects was low. For the EEG, the sensitivity was 86.4 % and the reproducibility 57.1 %. An optical neuronal signal was not detected, although novel filtering considerably reduced noise
    corecore