28 research outputs found

    Fast, robust and effective decellularization of whole human livers using mild detergents and pressure controlled perfusion

    Get PDF
    Human whole-liver perfusion-decellularization is an emerging technique for producing bio-scaffolds for tissue engineering purposes. The native liver extracellular matrix (ECM) provides a superior microenvironment for hepatic cells in terms of adhesion, survival and function. However, current decellularization protocols show a high degree of variation in duration. More robust and effective protocols are required, before human decellularized liver ECM can be considered for tissue engineering applications. The aim of this study is to apply pressure-controlled perfusion and test the efficacy of two different detergents in porcine and human livers. To test this, porcine livers were decellularized using two different protocols; a triton-x-100 (Tx100)-only protocol (N = 3) and a protocol in which Tx100 was combined with SDS (N = 3) while maintaining constant pressure of 120 mm Hg. Human livers (N = 3) with different characteristics (age, weight and fat content) discarded for transplantation were decellularized using an adapted version of the Tx-100-only protocol. Decellularization efficacy was determined by histology and analysis of DNA and RNA content. Furthermore, the preservation of ECM components was assessed. After completing the perfusion cycles with detergents the porcine li

    A Proof of Concept Study on Real-Pime LiMAx CYP1A2 Liver Function Assessment of Donor Grafts During Normothermic Machine Perfusion

    Get PDF
    No single reliable parameter exists to assess liver graft function of extended criteria donors during ex-vivo normothermic machine perfusion (NMP). The liver maximum capacity (LiMAx) test is a clinically validated cytochromal breath test, measuring liver function based on 13CO2 production. As an innovative concept, we aimed to integrate the LiMAx breath test with NMP to assess organ function. Eleven human livers were perfused using NMP. After one hour of stabilization, LiMAx testing was performed. Injury markers (ALT, AST, miR-122, FMN, and Suzuki-score) and lactate clearance were measured and related to LiMAx values. LiMAx values ranged between 111 and 1838 µg/kg/h, and performing consecutive LiMAx tests during longer NMP was feasible. No correlation was found between LiMAx value and miR-122 and FMN levels in the perfusate. However, a significant inverse correlation was found between LiMAx value and histological injury (Suzuki-score, R = − 0.874, P < 0.001), AST (R = − 0.812, P = 0.004) and ALT (R = − 0.687, P = 0.028). Furthermore, a significant correlation was found with lactate clearance (R = 0.683, P = 0.043). We demonstrate, as proof of principle, that liver function during NMP can be quantified using the LiMAx test, illustrating a positive correlation with traditional injury markers. This new breath-test application separates livers with adequate cytochromal liver function from inadequate ones and may support decision-making in the safe utilization of extended criteria donor grafts

    Hypothermic Machine Perfusion in Liver Transplantation - A Randomized Trial

    Get PDF
    BACKGROUND Transplantation of livers obtained from donors after circulatory death is associated with an increased risk of nonanastomotic biliary strictures. Hypothermic oxygenated machine perfusion of livers may reduce the incidence of biliary complications, but data from prospective, controlled studies are limited. METHODS In this multicenter, controlled trial, we randomly assigned patients who were undergoing transplantation of a liver obtained from a donor after circulatory death to receive that liver either after hypothermic oxygenated machine perfusion (machine-perfusion group) or after conventional static cold storage alone (control group). The primary end point was the incidence of nonanastomotic biliary strictures within 6 months after transplantation. Secondary end points included other graft-related and general complications. RESULTS A total of 160 patients were enrolled, of whom 78 received a machine-perfused liver and 78 received a liver after static cold storage only (4 patients did not receive a liver in this trial). Nonanastomotic biliary strictures occurred in 6% of the patients in the machine-perfusion group and in 18% of those in the control group (risk ratio, 0.36; 95% confidence interval [CI], 0.14 to 0.94; P=0.03). Postreperfusion syndrome occurred in 12% of the recipients of a machine-perfused liver and in 27% of those in the control group (risk ratio, 0.43; 95% CI, 0.20 to 0.91). Early allograft dysfunction occurred in 26% of the machine-perfused livers, as compared with 40% of control livers (risk ratio, 0.61; 95% CI, 0.39 to 0.96). The cumulative number of treatments for nonanastomotic biliary strictures was lower by a factor of almost 4 after machine perfusion, as compared with control. The incidence of adverse events was similar in the two groups. CONCLUSIONS Hypothermic oxygenated machine perfusion led to a lower risk of nonanastomotic biliary strictures following the transplantation of livers obtained from donors after circulatory death than conventional static cold storage

    Modelling metastatic colonization of cholangiocarcinoma organoids in decellularized lung and lymph nodes

    Get PDF
    Cholangiocarcinoma (CCA) is a type of liver cancer with an aggressive phenotype and dismal outcome in patients. The metastasis of CCA cancer cells to distant organs, commonly lung and lymph nodes, drastically reduces overall survival. However, mechanistic insight how CCA invades these metastatic sites is still lacking. This is partly because currently available models fail to mimic the complexity of tissue-specific environments for metastatic CCA. To create an in vitro model in which interactions between epithelial tumor cells and their surrounding extracellular matrix (ECM) can be studied in a metastatic setting, we combined patient-derived CCA organoids (CCAOs) (n=3) with decellularized human lung (n=3) and decellularized human lymph node (n=13). Decellularization resulted in removal of cells while preserving ECM structure and retaining important characteristics of the tissue origin. Proteomic analyses showed a tissue-specific ECM protein signature reflecting tissue functioning aspects. The macro and micro-scale mechanical properties, as determined by rheology and micro-indentation, revealed the local heterogeneity of the ECM. When growing CCAOs in decellularized lung and lymph nodes genes related to metastatic processes, including epithelial-to-mesenchymal transition and cancer stem cell plasticity, were significantly influenced by the ECM in an organ-specific manner. Furthermore, CCAOs exhibit significant differences in migration and proliferation dynamics dependent on the original patient tumor and donor of the target organ. In conclusion, CCA metastatic outgrowth is dictated both by the tumor itself as well as by the ECM of the target organ. Convergence of CCAOs with the ECM of its metastatic organs provide a new platform for mechanistic study of cancer metastasis

    Current practice in the management of acromioclavicular joint dislocations; a national survey in the Netherlands

    Get PDF
    Purpose: The aim of this study was to investigate current practice in the management of acromioclavicular joint dislocations in the Netherlands. Methods: A 36-item literature-based and expert consensus survey was developed. If available, one orthopaedic and one trauma surgeon for every hospital (n = 82) in the Netherlands was asked to complete the online questionnaire. Only complete data sets were included in the analysis. Descriptive analysis was performed using SPSS. Results: Of 149 invited surge

    The Authors' Reply: Organoid Technology: Are Human Cholangiocyte Organoids Immune Protected?

    No full text
    We thank Ekser et al for reading our commentary on the groundbreaking Science publication by Sampaziotis et al on repair of bile ducts after transplantation of cholangiocyte organoids in human liver grafts. Ekser et al comment that if allogenic cholangiocyte organoids would be used for graft repair, this potentially can provoke an alloimmune response. The authors are “puzzled by the outcome of the original paper as nonautologous organoids were used and no protective immunosuppressive medication is used during the normothermic machine perfusion of the liver grafts.” [...
    corecore