8 research outputs found

    Vibronic Wavepackets and Energy Transfer in Cryptophyte Light-Harvesting Complexes

    Get PDF
    Determining the key features of high-efficiency photosynthetic energy transfer remains an ongoing task. Recently, there has been evidence for the role of vibronic coherence in linking donor and acceptor states to redistribute oscillator strength for enhanced energy transfer. To gain further insights into the interplay between vibronic wavepackets and energy-transfer dynamics, we systematically compare four structurally related phycobiliproteins from cryptophyte algae by broad-band pumpā€“probe spectroscopy and extend a parametric model based on global analysis to include vibrational wavepacket characterization. The four phycobiliproteins isolated from cryptophyte algae are two ā€œopenā€ structures and two ā€œclosedā€ structures. The closed structures exhibit strong exciton coupling in the central dimer. The dominant energy-transfer pathway occurs on the subpicosecond timescale across the largest energy gap in each of the proteins, from central to peripheral chromophores. All proteins exhibit a strong 1585 cm<sup>ā€“1</sup> coherent oscillation whose relative amplitude, a measure of vibronic intensity borrowing from resonance between donor and acceptor states, scales with both energy-transfer rates and damping rates. Central exciton splitting may aid in bringing the vibronically linked donor and acceptor states into better resonance resulting in the observed doubled rate in the closed structures. Several excited-state vibrational wavepackets persist on timescales relevant to energy transfer, highlighting the importance of further investigation of the interplay between electronic coupling and nuclear degrees of freedom in studies on high-efficiency photosynthesis

    Functional Compartmental Modeling of the Photosystems in the Thylakoid Membrane at 77 K

    No full text
    Time-resolved fluorescence spectroscopy measurements at 77 K on thylakoid membrane preparations and isolated photosynthetic complexes thereof were investigated using target analysis with the aim of building functional compartmental models for the photosystems in the thylakoid membrane. Combining kinetic schemes with different spectral constraints enabled us to resolve the energy transfer pathways and decay characteristics of the different emissive species. We determined the spectral and energetic properties of the red Chl pools in both photosystems and quantified the formation of LHCII-LHCI-PSI supercomplexes in the transition from native to unstacked thylakoid membranes

    The Photophysics of the Orange Carotenoid Protein, a Light-Powered Molecular Switch

    No full text
    To cope with the deleterious effects of excess illumination, photosynthetic organisms have developed photoprotective mechanisms that dissipate the absorbed excess energy as heat from the antenna system. In cyanobacteria, a crucial step in the process is the activation, by blue-green light, of a soluble protein, known as orange carotenoid protein (OCP), which binds the carotenoid 3ā€²-hydroxyechinenone as its only pigment. While the spectroscopic properties of the inactive form of OCP have been described, the nature of the excited states in the active form still awaits elucidation. We applied transient absorption spectroscopy to the dark and the light activated forms of OCP to study and compare the excited state dynamics of both forms. We show that excitation of the photoactivated OCP leads to the population of new carotenoid excited states. One of these states populated shortly after excitation is characterized by a very pronounced charge transfer character and a lifetime of about 0.6 ps. When the illuminated sample is exposed to a dark relaxation period, it responds to excitation as the original dark sample, showing that photoactivation and decay of the photoactivated state are fully reversible. Thus OCP functions as a light-powered molecular switch that modulates its spectroscopic properties as a response to specific changes in light environment. We discuss the importance of this switch in cyanobacteria photoprotection and propose a mechanism wherein the red state of OCP echinenone acts as an energy dissipator via its charge transfer state

    Ultrafast Proton Shuttling in <i>Psammocora</i> Cyan Fluorescent Protein

    No full text
    Cyan, green, yellow, and red fluorescent proteins (FPs) homologous to green fluorescent protein (GFP) are used extensively as model systems to study fundamental processes in photobiology, such as the capture of light energy by protein-embedded chromophores, color tuning by the protein matrix, energy conversion by FoĢˆrster resonance energy transfer (FRET), and excited-state proton transfer (ESPT) reactions. Recently, a novel cyan fluorescent protein (CFP) termed psamFP488 was isolated from the genus <i>Psammocora</i> of reef building corals. Within the cyan color class, psamFP488 is unusual because it exhibits a significantly extended Stokes shift. Here, we applied ultrafast transient absorption and pumpā€“dumpā€“probe spectroscopy to investigate the mechanistic basis of psamFP488 fluorescence, complemented with fluorescence quantum yield and dynamic light scattering measurements. Transient absorption spectroscopy indicated that, upon excitation at 410 nm, the stimulated cyan emission rises in 170 fs. With pumpā€“dumpā€“probe spectroscopy, we observe a very short-lived (110 fs) ground-state intermediate that we assign to the deprotonated, anionic chromophore. In addition, a minor fraction (14%) decays with 3.5 ps to the ground state. Structural analysis of homologous proteins indicates that Glu-167 is likely positioned in sufficiently close vicinity to the chromophore to act as a proton acceptor. Our findings support a model where unusually fast ESPT from the neutral chromophore to Glu-167 with a time constant of 170 fs and resulting emission from the anionic chromophore forms the basis of the large psamFP488 Stokes shift. When dumped to the ground state, the proton on neutral Glu is very rapidly shuttled back to the anionic chromophore in 110 fs. Proton shuttling in excited and ground states is a factor of 20ā€“4000 faster than in GFP, which probably results from a favorable hydrogen-bonding geometry between the chromophore phenolic oxygen and the glutamate acceptor, possibly involving a short hydrogen bond. At any time in the reaction, the proton is localized on either the chromophore or Glu-167, which implies that most likely no low-barrier hydrogen bond exists between these molecular groups. This work supports the notion that proton transfer in biological systems, be it in an electronic excited or ground state, can be an intrinsically fast process that occurs on a 100 fs time scale. PsamFP488 represents an attractive model system that poses an ultrafast proton transfer regime in discrete steps. It constitutes a valuable model system in addition to wild type GFP, where proton transfer is relatively slow, and the S65T/H148D GFP mutant, where the effects of low-barrier hydrogen bonds dominate

    Hydrogen Bond Switching among Flavin and Amino Acids Determines the Nature of Proton-Coupled Electron Transfer in BLUF Photoreceptors

    No full text
    BLUF domains are flavin-binding photoreceptors that can be reversibly switched from a dark-adapted state to a light-adapted state. Proton-coupled electron transfer (PCET) from a conserved tyrosine to the flavin that results in a neutral flavin semiquinone/tyrosyl radical pair constitutes the photoactivation mechanism of BLUF domains. Whereas in the dark-adapted state PCET occurs in a sequential fashion where electron transfer precedes proton transfer, in the light-adapted state the same radical pair is formed by a concerted mechanism. We propose that the altered nature of the PCET process results from a hydrogen bond switch between the flavin and its surrounding amino acids that preconfigures the system for proton transfer. Hence, BLUF domains represent an attractive biological model system to investigate and understand PCET in great detail

    Subpicosecond Excited-State Proton Transfer Preceding Isomerization During the Photorecovery of Photoactive Yellow Protein

    No full text
    The ultrafast excited-state dynamics underlying the receptor state photorecovery is resolved in the M100A mutant of the photoactive yellow protein (PYP) from Halorhodospira halophila. The M100A PYP mutant, with its distinctly slower photocycle than wt PYP, allows isolation of the pB signaling state for study of the photodynamics of the protonated chromophore <i>cis-p</i>-coumaric acid. Transient absorption signals indicate a subpicosecond excited-state proton-transfer reaction in the pB state that results in chromophore deprotonation prior to the cisāˆ’trans isomerization required in the photorecovery dynamics of the pG state. Two terminal photoproducts are observed, a blue-absorbing species presumed to be deprotonated <i>trans-p</i>-coumaric acid and an ultraviolet-absorbing protonated photoproduct. These two photoproducts are hypothesized to originate from an equilibrium of open and closed folded forms of the signaling state, I<sub>2</sub> and I<sub>2</sub>ā€²

    Photoionization and Electron Radical Recombination Dynamics in Photoactive Yellow Protein Investigated by Ultrafast Spectroscopy in the Visible and Near-Infrared Spectral Region

    No full text
    Photoinduced ionization of the chromophore inside photoactive yellow protein (PYP) was investigated by ultrafast spectroscopy in the visible and near-infrared spectral regions. An absorption band that extended from around 550 to 850 nm was observed and ascribed to solvated electrons, ejected from the <i>p</i>-hydroxycinnamic acid anion chromophore upon the absorption of two 400 nm photons. Global kinetic analysis showed that the solvated electron absorption decayed in two stages: a shorter phase of around 10 ps and a longer phase of more than 3 ns. From a simulation based on a diffusion model we conclude that the diffusion rate of the electron is about 0.8 ƅ<sup>2</sup>/ps in wild type PYP, and that the electron is ejected to a short distance of only several angstroms away from the chromophore. The chromophoreā€“protein pocket appears to provide a water-similar local environment for the electron. Because mutations at different places around the chromophore have different effect on the electron recombination dynamics, we suggest that solvated electrons could provide a new method to investigate the local dielectric environment inside PYP and thus help to understand the role of the protein in the photoisomerization process

    Excitation Energy Trapping and Dissipation by Ni-Substituted Bacteriochlorophyll <i>a</i> in Reconstituted LH1 Complexes from Rhodospirillum rubrum

    No full text
    Bacteriochlorophyll <i>a</i> with Ni<sup>2+</sup> replacing the central Mg<sup>2+</sup> ion was used as an ultrafast excitation energy dissipation center in reconstituted bacterial LH1 complexes. B870, a carotenoid-less LH1 complex, and B880, an LH1 complex containing spheroidene, were obtained via reconstitution from the subunits isolated from chromatophores of Rhodospirillum rubrum. Ni-substituted bacteriochlorophyll <i>a</i> added to the reconstitution mixture partially substituted the native pigment in both forms of LH1. The excited-state dynamics of the reconstituted LH1 complexes were probed by femtosecond pumpā€“probe transient absorption spectroscopy in the visible and near-infrared spectral region. Spheroidene-binding B880 containing no excitation dissipation centers displayed complex dynamics in the time range of 0.1ā€“10 ps, reflecting internal conversion and intersystem crossing in the carotenoid, exciton relaxation in BChl complement, and energy transfer from carotenoid to the latter. In B870, some aggregation-induced excitation energy quenching was present. The binding of Ni-BChl <i>a</i> to both B870 and B880 resulted in strong quenching of the excited states with main deexcitation lifetime of ca. 2 ps. The LH1 excited-state lifetime could be modeled with an intrinsic decay time constant in Ni-substituted bacteriochlorophyll <i>a</i> of 160 fs. The presence of carotenoid in LH1 did not influence the kinetics of energy trapping by Ni-BChl unless the carotenoid was directly excited, in which case the kinetics was limited by a slower carotenoid S<sub>1</sub> to bacteriochlorophyll energy transfer
    corecore