33 research outputs found

    Anaerobic digestion of crop and waste biomass: Impact of feedstock characteristics on process performance

    Get PDF
    Anaerobic digestion provides an array of positive environmental benefits such as reducing greenhouse gas emissions, replacing mineral fertilizers, producing renewable energy and treating waste. However, pitfalls in anaerobic digestion such as poor methane yields, process instability, process failure and regional shortages of feedstock have limited the full exploitation of the anaerobic digestion process. The research presented in this thesis deals with the assessment of the possible negative or positive impacts of feedstock characteristics on the efficiency of anaerobic digestion. In addition, it investigates ways of enhancing the methane yield of the feedstock by improving the feedstock characteristics. The feedstocks investigated were various energy crops, food industrial waste and sewage sludge. The improvement methods investigated were ensiling, nutrient supplementation, co-digestion and anaerobic pretreatment. It was found that ensiling crops results in insignificant losses in energy, total solid and wet weight. In addition, no significant difference was found in methane yields between the ensiled and fresh crop samples. The importance of correcting for losses of volatiles in total solids determination was pointed out and it was shown that failing to do so could be the main reason why many previous publications report increased total solid based methane yields after ensiling. Increased methane yield in silages may therefore be an effect of an analytical error rather than an effect of using ensiling as a pretreatment prior to anaerobic digestion. Anaerobic digestion of crop biomass is known to be particularly limited by nutrient availability. Direct nutrient supplementation in crop mono-digestion in this research demonstrated an efficient biogas process at the shorter hydraulic retention times commonly applied in co-digestion of crop biomass and manure. The high degradation efficiency was evidenced by high methane yields, comparable to maximum expected yields generated under controlled conditions, and low volatile fatty acids accumulation. As a result of nutrient addition, the digestate could comply with certification standards for bio-fertilizer. Also, viscosity problems commonly reported for crop mono-digestion were not observed in this study, which could be another effect of nutrient addition. Co-digesting of waste biomass and crop biomass led to significant improvement in methane yield per ton of feedstock and carbon to nitrogen ratio as compared to digestion of only the waste biomass. Biogas production from crops in combination with waste biomass also eliminated the need for addition of micronutrients normally required in crop mono-digestion. Co-digestion was also presented as a means of feedstock supplementation to curb feedstock shortages in waste-based anaerobic digestion processes. In addition, inhibitors in anaerobic digestion such as free ammonia and light metal ions were diluted, a condition which can lead to an overall viable biogas process Anaerobic pre-treatment led to the solubilisation of particulate organic matter in sewage sludge. This solubilisation could have led to the improved methane yield, methane production rate and reduction in volatile solids. Applying different feedstock improvement solutions to the various feedstocks investigated, i.e. nutrient addition, co-digestion and pretreatment, were demonstrated as effective means of enhancing the methane yield of the feedstock thereby improving the overall anaerobic digestion process

    Ensiling of crops for biogas production: effects on methane yield and total solids determination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ensiling is a common method of preserving energy crops for anaerobic digestion, and many scientific studies report that ensiling increases the methane yield. In this study, the ensiling process and the methane yields before and after ensiling were studied for four crop materials.</p> <p>Results</p> <p>The changes in wet weight and total solids (TS) during ensiling were small and the loss of energy negligible. The methane yields related to wet weight and to volatile solids (VS) were not significantly different before and after ensiling when the VS were corrected for loss of volatile compounds during TS and VS determination. However, when the TS were measured according to standard methods and not corrected for losses of volatile compounds, the TS loss during ensiling was overestimated for maize and sugar beet. The same methodological error leads to overestimation of methane yields; when TS and VS were not corrected the methane yield appeared to be 51% higher for ensiled than fresh sugar beet.</p> <p>Conclusions</p> <p>Ensiling did not increase the methane yield of the studied crops. Published methane yields, as well as other information on silage related to uncorrected amounts of TS and VS, should be regarded with caution.</p

    High methane yields and stable operation during anaerobic digestion of nutrient-supplemented energy crop mixtures

    No full text
    The feasibility of digesting energy crops supplemented with macro- and micronutrients instead of manure, without the commonly applied long hydraulic retention time (HRT), was investigated in long-term, single-stage continuous stirred tank processes. The crops used were mixtures of sugar beets, maize and whole crop triticale. The organic loading rate (OLR) measured as a total solid (TS) was 1.5-5.5 kg m(-3) d(-1) and the HRT from 30 to 40 days. The results showed high methane yields, comparable to those in batch digestion, and high stability. The digestion of beets only was most stable, and showed the highest average TS-based methane yield (383 +/- 26 m(3) kg(-1)) at an OLR of 4.5 kg m(-3) d(-1) and a HRT of 40 days. No significant difference in methane yield was found for all the crop mixtures during stable operation. Nutrient addition therefore showed the same stimulatory and stabilising effects as manure with high methane yields achieved at relatively short HRTs. (c) 2012 Elsevier Ltd. All rights reserved

    Effects of solid retention time on anaerobic digestion of dewatered-sewage sludge in mesophilic and thermophilic conditions

    No full text
    Anaerobic digestion of dewatered-sewage sludge using continuous stirred tank reactors (CSTRs) in duplicates was evaluated under thermophilic (50 degrees C) and mesophilic (37 degrees C) conditions over a range of nine solid retention times (SRTs). The 35- and 30-day SRTs were designed to simulate a full-scale plant operation while 25-, 20-, 15- and 12-day SRTs were planned to evaluate process performance at the various SRTs. The 9-, 5- and 3-day SRTs were performed to push the reactors to extend their degradation capacity and test the threshold for process imbalance. The corresponding organic loading rates (OLR) varied from 1.6 to 20.5 kg VS m(-3) Biogas production rate could be tripled when the SRT was shortened from 30 to 12 days and more than doubled from 35- to 15-day SRT because of a concomitant increase in OLR. In general, higher biogas productivity was realized under thermophilic, but methane yields were comparable due to the higher methane content in the biogas under mesophilic digestion. The methane content in biogas fluctuated between 55 and 65% and the methane yield ranged from 0.314 to 0.348 Nm(3) CH4 kg VSadded-1 day(-1) for both thermophilic and mesophilic digestion. The VS-reduction at 12- and 15-day SRT ranged from 45 to 52% and there was no accumulation of VFAs. Increasing concentrations of VFAs, decreasing concentration of partial alkalinity and decrease in pH were noted as signs of reactor instability. Process imbalance started at 9-day SRT, souring of the reactors, cell wash-out and foaming was noted as the principal causes of process failure under both thermophilic and mesophilic conditions. This study projected the possibility of using CSTRs in treating dewatered-sewage sludge at a shorter SRT to achieve reasonable biogas production and VS-reduction without encountering adverse operation conditions as foaming and wash-out of cells. Crown Copyright (c) 2010 Published by Elsevier Ltd. All rights reserved

    Effects of anaerobic pre-treatment on the degradation of dewatered-sewage sludge

    No full text
    Effects of anaerobic pre-treatment were evaluated on the dewatered-sewage sludge from a municipal wastewater treatment plant in order to improve its biodegradability through anaerobic digestion. The pre-treatment was conducted in laboratory scale at 25, 50 and 70 degrees C for an incubation time of two days. As a reference, sludge sample was also autoclaved at 121 degrees C for 20 min to determine the thermal effect to the subsequent sludge digestion. Characteristics of dewatered-sludge such as viscosity, pH and soluble chemical oxygen demand (SCOD) were affected by the pre-treatment. A higher SCOD after the pretreatment did not necessarily imply an increase in methane yield, although initial biodegradability rate was improved. In fact, a 'great' improvement in SCOD concentration (up to 27%) was translated in only 8% increase in the methane yield (298 +/- 9 and 276 +/- 6 Nml CH4 gVS(added)(-1) for pre-treated and untreated samples, respectively). Increasing the anaerobic pre-treatment time from 12 h to 2 days at 50 degrees C led to an 11% improvement in methane yield. Methane content in biogas increased from an average of 65-69% for the pre-treated and untreated substrates, respectively. Volatile solids (VS) reduction increased from 42% to 51%. The overall digestion time was not affected by the pre-treatment but 90% of methane was produced in the first 12 days of incubation for 50 degrees C pre-treated samples whereas it took 2-5 days more for 25, 70 degrees C pre-treated and untreated sludge samples. In this study, thermophilic digestion was also found to be a better option in terms of faster digestion and higher VS-reduction, but it showed lower methane yield as compared to mesophilic digestion, i.e. 9% and 11% increment in methane yields for thermophilic and mesophilic digestions, respectively. (C) 2008 Elsevier Ltd. All rights reserved

    Sustainable management of cassava processing waste for promoting rural development

    No full text
    Cassava is the third-most important food source in the tropics after rice and maize. Cassava is the staple food for about half a billion people in the World. It is a tropical crop grown mainly in Africa, Asia, and South America. It can be cultivated on arid and semiarid land where other crops do not thrive. During the processing of cassava into chips, flour or starch, enormous amount of wastes are generated ca. 0.47 tons for each ton of fresh tubers processed. This waste consists of peels, wastewater and pulp that contain between 36 to 45% (w/w) of starch and from 55 to 64% (w/w) of lignocellulosic biomass. An innovative processing system is therefore essential to take into account the transformation of this waste into value added products. This will address both the environmental pollution and inefficient utilization of these resources. The starch and lignocellulosic cassava processing waste can be converted into renewable energy carriers such as biogas through anaerobic digestion (AD), bio-ethanol through fermentation and bio-hydrogen through dark fermentation. In the case of AD, the waste can be used directly as substrate while for fermentation; the waste must be pre-treated to release monomeric sugars, which are substrates for bioethanol and bio-hydrogen production. There is possibility of sequential fermentation for either bio-ethanol or bio-hydrogen and AD for biogas production thereby making use of all the fractions of the cassava waste. Generation of renewable energy from cassava waste could benefit rural populations where access to electricity is very poor. This would also reduce the dependence on firewood and charcoal that are known to provide almost 90 percent of domestic energy requirements. Such a development could help save trees, lower emissions that cause climate change and reduce the fumes from millions of tons of firewood that threaten human health, especially the health of women and children. Although deforestation and land degradation are well-known, the charcoal and firewood consumption that causes them is still on the rise. This chapter, therefore, explores the use of cassava waste for production of fuel energy with a focus for use as domestic cooking fuel. It also proposes an efficient approach to cassava processing to ensure efficient resource utilization in which every part of the tuber is converted to value added products mitigating environmental pollution and improving human health

    Cryogel-supported titanate nanotubes for waste treatment: Impact on methane production and bio-fertilizer quality.

    No full text
    By reducing the cadmium (Cd(2+)) content in biomass used for bio-based products such as biogas, a less toxic bio-based fertilizer can be obtained. In this work, we demonstrate how a macroporous polymer can support titanate nanotubes, and we take advantage of its known selective adsorption behavior towards Cd(2+) in an adsorption process from real nutrient-rich process water from hydrolysis of seaweed, a pollutant-rich biomass. We show that pretreatment steps involving alteration in area-to-volume ratio performed in aerated and acidic conditions release the most Cd(2+) from the solid material. By integrating an adsorption step between hydrolysis and the biomethane, we show that it was possible to obtain high Cd(2+) removal (ca. 94%) despite molar excess (between 100 and 500) of co-present ions (e.g., Mg(2+), Ca(2+), Na(+), K(+)) and with maintained total phosphorous content. The bio-methane potential did not significantly decrease as compared to a process without cadmium removal and the yielded bio-fertilizer followed Swedish guideline values. This study provides a sound and promising alternative for a novel remediation step, enabling higher use of otherwise tricky and to some extent overlooked biomass sources

    Improving methane production from wheat straw by digestate liquor recirculation in continuous stirred tank processes

    No full text
    Wheat straw is an abundant, cheap substrate that can be used for methane production. However, the nutrient content in straw is inadequate for methane fermentation. In this study, recycling digestate liquor was implemented in single-stage continuous stirred tank processes for enrichment of the nutrient content of straw with the aim of improving the methane production. The VS-based organic loading rate was set at 2 g/(L d) and the solid retention time at 40 days. When wheat straw alone was used as the substrate, the methane yields achieved with digestate liquor recycling was on average 240 ml CH4/g VS giving a 21% improvement over the processes without recycling. However, over time, the processes suffered from declining methane yields and poor stability evidenced by low pH. To maintain process stability, wheat straw was co-digested with sewage sludge or supplemented with macronutrients (nitrogen and phosphorous). As a result, the processes with digestate liquor recycling could be operated stably, achieving methane yields ranging from 288 to 296 ml CH4/g VS. Besides, the processes could not be operated sturdily with supplementation of macronutrients without digestate liquor recycling. The highest methane yield (296 16 ml CH4/g VS) was achieved by co-digestion with sewage sludge plus recycling of digestate liquor after filtration (retention of nutrients and microorganisms). This was comparable to the maximum expected methane yield of 293 13 ml CH4/g VS achieved in batch test. The present study therefore demonstrated that digestate liquor recycling could lead to a decreased dilution of vital nutrients from the reactors thereby rendering high process performance and stability. (C) 2015 Elsevier Ltd. All rights reserved

    Improved utilization of fish waste by anaerobic digestion following omega-3 fatty acids extraction.

    No full text
    Fish waste is a potentially valuable resource from which high-value products can be obtained. Anaerobic digestion of the original fish waste and the fish sludge remaining after enzymatic pre-treatment to extract fish oil and fish protein hydrolysate was evaluated regarding the potential for methane production. The results showed high biodegradability of both fish sludge and fish waste, giving specific methane yields of 742 and 828 m(3)CH(4)/tons VS added, respectively. However, chemical analysis showed high concentrations of light metals which, together with high fat and protein contents, could be inhibitory to methanogenic bacteria. The feasibility of co-digesting the fish sludge with a carbohydrate-rich residue from crop production was thus investigated, and a full-scale process outlined for converting odorous fish waste to useful products

    Improving methane production from wheat straw by digestate liquor recirculation in continuous stirred tank processes

    No full text
    Wheat straw is an abundant, cheap substrate that can be used for methane production. However, the nutrient content in straw is inadequate for methane fermentation. In this study, recycling digestate liquor was implemented in single-stage continuous stirred tank processes for enrichment of the nutrient content of straw with the aim of improving the methane production. The VS-based organic loading rate was set at 2 g/(L d) and the solid retention time at 40 days. When wheat straw alone was used as the substrate, the methane yields achieved with digestate liquor recycling was on average 240 ml CH4/g VS giving a 21% improvement over the processes without recycling. However, over time, the processes suffered from declining methane yields and poor stability evidenced by low pH. To maintain process stability, wheat straw was co-digested with sewage sludge or supplemented with macronutrients (nitrogen and phosphorous). As a result, the processes with digestate liquor recycling could be operated stably, achieving methane yields ranging from 288 to 296 ml CH4/g VS. Besides, the processes could not be operated sturdily with supplementation of macronutrients without digestate liquor recycling. The highest methane yield (296 16 ml CH4/g VS) was achieved by co-digestion with sewage sludge plus recycling of digestate liquor after filtration (retention of nutrients and microorganisms). This was comparable to the maximum expected methane yield of 293 13 ml CH4/g VS achieved in batch test. The present study therefore demonstrated that digestate liquor recycling could lead to a decreased dilution of vital nutrients from the reactors thereby rendering high process performance and stability. (C) 2015 Elsevier Ltd. All rights reserved
    corecore