435 research outputs found

    Vertical pairing of identical particles suspended in the plasma sheath

    Full text link
    It is shown experimentally that vertical pairing of two identical microspheres suspended in the sheath of a radio-frequency (rf) discharge at low gas pressures (a few Pa), appears at a well defined instability threshold of the rf power. The transition is reversible, but with significant hysteresis on the second stage. A simple model, which uses measured microsphere resonance frequencies and takes into account besides Coulomb interaction between negatively charged microspheres also their interaction with positive ion wake charges, seems to explain the instability threshold quite well.Comment: 4 pages, 6 figures. to appear in Phys. Rev. Lett. 86, May 14th (2001

    Current-voltage characteristics of quasi-one-dimensional superconductors: An S-curve in the constant voltage regime

    Full text link
    Applying a constant voltage to superconducting nanowires we find that its IV-characteristic exhibits an unusual S-behavior. This behavior is the direct consequence of the dynamics of the superconducting condensate and of the existence of two different critical currents: j_{c2} at which the pure superconducting state becomes unstable and j_{c1}<j_{c2} at which the phase slip state is realized in the system.Comment: 4 pages, 5 figures, replaced with minor change

    Large Magnetoresistance Oscillations in Mesoscopic Superconductors Due to Current-Excited Moving Vortices

    Full text link
    We show in the case of a superconducting Nb ladder that a mesoscopic superconductor typically exhibits magnetoresistance oscillations whose amplitude and temperature dependence are different from those stemming from the Little-Parks effect. We demonstrate that these large resistance oscillations (as well as the monotonic background on which they are superimposed) are due to {\it current-excited moving vortices}, where the applied current in competition with the oscillating Meissner currents imposes/removes the barriers for vortex motion in increasing magnetic field. Due to the ever present current in transport measurements, this effect should be considered in parallel with the Little-Parks effect in low-TcT_c samples, as well as with recently proposed thermal activation of dissipative vortex-antivortex pairs in high-TcT_c samples

    Low-energy fusion caused by an interference

    Full text link
    Fusion of two deuterons of room temperature energy is studied. The nuclei are in vacuum with no connection to any external source (electric or magnetic field, illumination, surrounding matter, traps, etc.) which may accelerate them. The energy of the two nuclei is conserved and remains small during the motion through the Coulomb barrier. The penetration through this barrier, which is the main obstacle for low-energy fusion, strongly depends on a form of the incident flux on the Coulomb center at large distances from it. In contrast to the usual scattering, the incident wave is not a single plane wave but the certain superposition of plane waves of the same energy and various directions, for example, a convergent conical wave. As a result of interference, the wave function close to the Coulomb center is determined by a cusp caustic which is probed by de Broglie waves. The particle flux gets away from the cusp and moves to the Coulomb center providing a not small probability of fusion (cusp driven tunneling). Getting away from a caustic cusp also occurs in optics and acoustics

    Dynamics of lane formation in driven binary complex plasmas

    Full text link
    The dynamical onset of lane formation is studied in experiments with binary complex plasmas under microgravity conditions. Small microparticles are driven and penetrate into a cloud of big particles, revealing a strong tendency towards lane formation. The observed time-resolved lane formation process is in good agreement with computer simulations of a binary Yukawa model with Langevin dynamics. The laning is quantified in terms of the anisotropic scaling index, leading to a universal order parameter for driven systems.Comment: 4 pages, 3 figures, movies available at http://www.mpe.mpg.de/pke/lane-formation

    Dynamics of 2D pancake vortices in layered superconductors

    Full text link
    The dynamics of 2D pancake vortices in Josephson-coupled superconducting/normal - metal multilayers is considered within the time-dependent Ginzburg-Landau theory. For temperatures close to TcT_{c} a viscous drag force acting on a moving 2D vortex is shown to depend strongly on the conductivity of normal metal layers. For a tilted vortex line consisting of 2D vortices the equation of viscous motion in the presence of a transport current parallel to the layers is obtained. The specific structure of the vortex line core leads to a new dynamic behavior and to substantial deviations from the Bardeen-Stephen theory. The viscosity coefficient is found to depend essentially on the angle γ\gamma between the magnetic field B{\bf B} and the c{\bf c} axis normal to the layers. For field orientations close to the layers the nonlinear effects in the vortex motion appear even for slowly moving vortex lines (when the in-plane transport current is much smaller than the Ginzburg-Landau critical current). In this nonlinear regime the viscosity coefficient depends logarithmically on the vortex velocity VV.Comment: 15 pages, revtex, no figure

    Rolling Friction in Loose Media and its Role in Mechanics Problems

    Get PDF
    Rolling friction between particles is to be set in problems of granular material mechanics alongside with sliding friction. A classical problem of material passive lateral pressure on the retaining wall is submitted as a case in point. 3D method of discrete elements was employed for numerical analysis. Material is a universe of spherical particles with specified size distribution. Viscose-elastic properties of the material and surface friction are included, when choosing contact forces. Particles' resistance to rolling relative to other particles and to the boundary is set into the model. Kinetic patterns of medium deformations are given. It has been proved that rolling friction can significantly affect magnitude and nature of passive lateral pressure on the retaining wall

    Nonlinear vertical oscillations of a particle in a sheath of a rf discharge

    Full text link
    A new simple method to measure the spatial distribution of the electric field in the plasma sheath is proposed. The method is based on the experimental investigation of vertical oscillations of a single particle in the sheath of a low-pressure radio-frequency discharge. It is shown that the oscillations become strongly nonlinear and secondary harmonics are generated as the amplitude increases. The theory of anharmonic oscillations provides a good qualitative description of the data and gives estimates for the first two anharmonic terms in an expansion of the sheath potential around the particle equilibrium.Comment: 11 pages, 4 figure

    Metastability of (d+n)-dimensional elastic manifolds

    Full text link
    We investigate the depinning of a massive elastic manifold with dd internal dimensions, embedded in a (d+n)(d+n)-dimensional space, and subject to an isotropic pinning potential V(u)=V(u).V({\bf u})=V(|{\bf u}|). The tunneling process is driven by a small external force F.{\bf F}. We find the zero temperature and high temperature instantons and show that for the case 1d61\le d\le 6 the problem exhibits a sharp transition from quantum to classical behavior: At low temperatures T<TcT<T_{c} the Euclidean action is constant up to exponentially small corrections, while for T>Tc,T> T_{c}, SEucl(d,T)/=U(d)/T.{S_{\rm Eucl}(d,T)}/{\hbar} = {U(d)}/{T}. The results are universal and do not depend on the detailed shape of the trapping potential V(u)V({\bf u}). Possible applications of the problem to the depinning of vortices in high-TcT_{c} superconductors and nucleation in dd-dimensional phase transitions are discussed. In addition, we determine the high-temperature asymptotics of the preexponential factor for the (1+1)(1+1)-dimensional problem.Comment: RevTeX, 10 pages, 3 figures inserte
    corecore