435 research outputs found
Vertical pairing of identical particles suspended in the plasma sheath
It is shown experimentally that vertical pairing of two identical
microspheres suspended in the sheath of a radio-frequency (rf) discharge at low
gas pressures (a few Pa), appears at a well defined instability threshold of
the rf power. The transition is reversible, but with significant hysteresis on
the second stage. A simple model, which uses measured microsphere resonance
frequencies and takes into account besides Coulomb interaction between
negatively charged microspheres also their interaction with positive ion wake
charges, seems to explain the instability threshold quite well.Comment: 4 pages, 6 figures. to appear in Phys. Rev. Lett. 86, May 14th (2001
Current-voltage characteristics of quasi-one-dimensional superconductors: An S-curve in the constant voltage regime
Applying a constant voltage to superconducting nanowires we find that its
IV-characteristic exhibits an unusual S-behavior. This behavior is the direct
consequence of the dynamics of the superconducting condensate and of the
existence of two different critical currents: j_{c2} at which the pure
superconducting state becomes unstable and j_{c1}<j_{c2} at which the phase
slip state is realized in the system.Comment: 4 pages, 5 figures, replaced with minor change
Large Magnetoresistance Oscillations in Mesoscopic Superconductors Due to Current-Excited Moving Vortices
We show in the case of a superconducting Nb ladder that a mesoscopic
superconductor typically exhibits magnetoresistance oscillations whose
amplitude and temperature dependence are different from those stemming from the
Little-Parks effect. We demonstrate that these large resistance oscillations
(as well as the monotonic background on which they are superimposed) are due to
{\it current-excited moving vortices}, where the applied current in competition
with the oscillating Meissner currents imposes/removes the barriers for vortex
motion in increasing magnetic field. Due to the ever present current in
transport measurements, this effect should be considered in parallel with the
Little-Parks effect in low- samples, as well as with recently proposed
thermal activation of dissipative vortex-antivortex pairs in high-
samples
Low-energy fusion caused by an interference
Fusion of two deuterons of room temperature energy is studied. The nuclei are
in vacuum with no connection to any external source (electric or magnetic
field, illumination, surrounding matter, traps, etc.) which may accelerate
them. The energy of the two nuclei is conserved and remains small during the
motion through the Coulomb barrier. The penetration through this barrier, which
is the main obstacle for low-energy fusion, strongly depends on a form of the
incident flux on the Coulomb center at large distances from it. In contrast to
the usual scattering, the incident wave is not a single plane wave but the
certain superposition of plane waves of the same energy and various directions,
for example, a convergent conical wave. As a result of interference, the wave
function close to the Coulomb center is determined by a cusp caustic which is
probed by de Broglie waves. The particle flux gets away from the cusp and moves
to the Coulomb center providing a not small probability of fusion (cusp driven
tunneling). Getting away from a caustic cusp also occurs in optics and
acoustics
Dynamics of lane formation in driven binary complex plasmas
The dynamical onset of lane formation is studied in experiments with binary
complex plasmas under microgravity conditions. Small microparticles are driven
and penetrate into a cloud of big particles, revealing a strong tendency
towards lane formation. The observed time-resolved lane formation process is in
good agreement with computer simulations of a binary Yukawa model with Langevin
dynamics. The laning is quantified in terms of the anisotropic scaling index,
leading to a universal order parameter for driven systems.Comment: 4 pages, 3 figures, movies available at
http://www.mpe.mpg.de/pke/lane-formation
Dynamics of 2D pancake vortices in layered superconductors
The dynamics of 2D pancake vortices in Josephson-coupled
superconducting/normal - metal multilayers is considered within the
time-dependent Ginzburg-Landau theory. For temperatures close to a
viscous drag force acting on a moving 2D vortex is shown to depend strongly on
the conductivity of normal metal layers. For a tilted vortex line consisting of
2D vortices the equation of viscous motion in the presence of a transport
current parallel to the layers is obtained. The specific structure of the
vortex line core leads to a new dynamic behavior and to substantial deviations
from the Bardeen-Stephen theory. The viscosity coefficient is found to depend
essentially on the angle between the magnetic field and the
axis normal to the layers. For field orientations close to the layers
the nonlinear effects in the vortex motion appear even for slowly moving vortex
lines (when the in-plane transport current is much smaller than the
Ginzburg-Landau critical current). In this nonlinear regime the viscosity
coefficient depends logarithmically on the vortex velocity .Comment: 15 pages, revtex, no figure
Rolling Friction in Loose Media and its Role in Mechanics Problems
Rolling friction between particles is to be set in problems of granular material mechanics alongside with sliding friction. A classical problem of material passive lateral pressure on the retaining wall is submitted as a case in point. 3D method of discrete elements was employed for numerical analysis. Material is a universe of spherical particles with specified size distribution. Viscose-elastic properties of the material and surface friction are included, when choosing contact forces. Particles' resistance to rolling relative to other particles and to the boundary is set into the model. Kinetic patterns of medium deformations are given. It has been proved that rolling friction can significantly affect magnitude and nature of passive lateral pressure on the retaining wall
Nonlinear vertical oscillations of a particle in a sheath of a rf discharge
A new simple method to measure the spatial distribution of the electric field
in the plasma sheath is proposed. The method is based on the experimental
investigation of vertical oscillations of a single particle in the sheath of a
low-pressure radio-frequency discharge. It is shown that the oscillations
become strongly nonlinear and secondary harmonics are generated as the
amplitude increases. The theory of anharmonic oscillations provides a good
qualitative description of the data and gives estimates for the first two
anharmonic terms in an expansion of the sheath potential around the particle
equilibrium.Comment: 11 pages, 4 figure
Metastability of (d+n)-dimensional elastic manifolds
We investigate the depinning of a massive elastic manifold with internal
dimensions, embedded in a -dimensional space, and subject to an
isotropic pinning potential The tunneling process is
driven by a small external force We find the zero temperature and
high temperature instantons and show that for the case the
problem exhibits a sharp transition from quantum to classical behavior: At low
temperatures the Euclidean action is constant up to exponentially
small corrections, while for The results are universal and do not depend on the detailed shape
of the trapping potential . Possible applications of the problem to
the depinning of vortices in high- superconductors and nucleation in
-dimensional phase transitions are discussed. In addition, we determine the
high-temperature asymptotics of the preexponential factor for the
-dimensional problem.Comment: RevTeX, 10 pages, 3 figures inserte
- …