475 research outputs found

    Experimental Study of Diamond Like Carbon (DLC) Coated Electrodes for Pulsed High Gradient Electron Gun

    Full text link
    For the SwissFEL Free Electron Laser project at the Paul Scherrer Institute, a pulsed High Gradient (HG) electron gun was used to study low emittance electron sources. Different metals and surface treatments for the cathode and anode were studied for their HG suitability. Diamond Like Carbon (DLC) coatings are found to perform exceptionally well for vacuum gap insulation. A set of DLC coated electrodes with different coating parameters were tested for both vacuum breakdown and photo electron emission. Surface electric fields over 250MV/m (350 - 400kV, pulsed) were achieved without breakdown. From the same surface, it was possible to photo-emit an electron beam at gradients up to 150MV/m. The test setup and the experimental results are presentedComment: 4 pages, 14 figures, IPMHVC 2010 : IEEE International Power Modulator and High Voltage Conferenc

    Empirical comparison of high gradient achievement for different metals in DC and pulsed mode

    Full text link
    For the SwissFEL project, an advanced high gradient low emittance gun is under development. Reliable operation with an electric field, preferably above 125 MV/m at a 4 mm gap, in the presence of an UV laser beam, has to be achieved in a diode configuration in order to minimize the emittance dilution due to space charge effects. In the first phase, a DC breakdown test stand was used to test different metals with different preparation methods at voltages up to 100 kV. In addition high gradient stability tests were also carried out over several days in order to prove reliable spark-free operation with a minimum dark current. In the second phase, electrodes with selected materials were installed in the 250 ns FWHM, 500 kV electron gun and tested for high gradient breakdown and for quantum efficiency using an ultra-violet laser.Comment: 25 pages, 13 figures, 5 tables. Follow up from FEL 2008 conference (Geyongju Korea 2008) New Title in JVST A (2010) : Vacuum breakdown limit and quantum efficiency obtained for various technical metals using DC and pulsed voltage source

    Quantitative and molecular genetics of juvenile wood traits in radiata and slash/Caribbean pines.

    Get PDF
    The Juvenile Wood Initiative (JWI) project has been running successfully since July 2003 under a Research Agreement with FWPA and Letters of Association with the consortium partners STBA (Southern Tree Breeding Association), ArborGen and FPQ (Forestry Plantations Queensland). Over the last five and half years, JWI scientists in CSIRO, FPQ, and STBA have completed all 12 major milestones and 28 component milestones according to the project schedule. We have made benchmark progress in understanding the genetic control of wood formation and interrelationships among wood traits. The project has made 15 primary scientific findings and several results have been adopted by industry as summarized below. This progress was detailed in 10 technical reports to funding organizations and industry clients. Team scientists produced 16 scientific manuscripts (8 published, 1 in press, 2 submitted, and several others in the process of submission) and 15 conference papers or presentations. Primary Scientific Findings. The 15 major scientific findings related to wood science, inheritance and the genetic basis of juvenile wood traits are: 1. An optimal method to predict stiffness of standing trees in slash/Caribbean pine is to combine gravimetric basic density from 12 mm increment cores with a standing tree prediction of MoE using a time of flight acoustic tool. This was the most accurate and cheapest way to rank trees for breeding selection for slash/Caribbean hybrid pine. This method was also recommended for radiata pine. 2. Wood density breeding values were predicted for the first time in the STBA breeding population using a large sample of 7,078 trees (increment cores) and it was estimated that selection of the best 250 trees for deployment will produce wood density gains of 12.4%. 3. Large genetic variation for a suite of wood quality traits including density, MFA, spiral grain, shrinkage, acoustic and non-acoustic stiffness (MoE) for clear wood and standing trees were observed. Genetic gains of between 8 and 49% were predicted for these wood quality traits with selection intensity between 1 to 10% for radiata pine. 4. Site had a major effect on juvenile-mature wood transition age and the effect of selective breeding for a shorter juvenile wood formation phase was only moderate (about 10% genetic gain with 10% selection intensity, equivalent to about 2 years reduction of juvenile wood). 5. The study found no usable site by genotype interactions for the wood quality traits of density, MFA and MoE for both radiata and slash/Caribbean pines, suggesting that assessment of wood properties on one or two sites will provide reliable estimates of the genetic worth of individuals for use in future breeding. 6. There were significant and sizable genotype by environment interactions between the mainland and Tasmanian regions and within Tasmania for DBH and branch size. 7. Strong genetic correlations between rings for density, MFA and MoE for both radiata and slash/Caribbean pines were observed. This suggests that selection for improved wood properties in the innermost rings would also result in improvement of wood properties in the subsequent rings, as well as improved average performance of the entire core. 8. Strong genetic correlations between pure species and hybrid performance for each of the wood quality traits were observed in the hybrid pines. Parental performance can be used to identify the hybrid families which are most likely to have superior juvenile wood properties of the slash/Caribbean F1 hybrid in southeast Queensland. 9. Large unfavourable genetic correlations between growth and wood quality traits were a prominent feature in radiata pine, indicating that overcoming this unfavourable genetic correlation will be a major technical issue in progressing radiata pine breeding. 10. The project created the first radiata pine 18 k cDNA microarray and generated 5,952 radiata pine xylogenesis expressed sequence tags (ESTs) which assembled into 3,304 unigenes. 11. A total of 348 genes were identified as preferentially expressed genes in earlywood or latewood while a total of 168 genes were identified as preferentially expressed genes in either juvenile or mature wood. 12. Juvenile earlywood has a distinct transcriptome relative to other stages of wood development. 13. Discovered rapid decay of linkage disequilibrium (LD) in radiata pine with LD decaying to approximately 50% within 1,700 base pairs (within a typical gene). A total of 913 SNPS from sequencing 177,380 base pairs were identified for association genetic studies. 14. 149 SNPs from 44 genes and 255 SNPs from a further 51 genes (total 95 genes) were selected for association analysis with 62 wood traits, and 30 SNPs were shortlisted for their significant association with variation of wood quality traits (density, MFA and MoE) with individual significant SNPs accounting for between 1.9 and 9.7% of the total genetic variation in traits. 15. Index selection using breeding objectives was the most profitable selection method for radiata pine, but in the long term it may not be the most effective in dealing with negative genetic correlations between wood volume and quality traits. A combination of economic and biological approaches may be needed to deal with the strong adverse correlation

    The Notochord, Notochordal cell and CTGF/CCN-2: ongoing activity from development through maturation

    Get PDF
    The growth regulating factor CTGF/CCN-2 is an integral factor in growth and development, connective tissue maintenance, wound repair and cell cycle regulation. It has recently been reported that CTGF/CCN-2 is involved in very early development having been detected in early notochord formation in zebrafish using CTGF/CCN-2 promoter-driven green fluorescent protein (GFP) plasmids. In these studies fluorescence was detected early in the developing embryos, a finding of considerable significance in that CTGF/CCN-2 deficient mutant mice die early after birth due to severe cartilage and skeletal dysplasia and respiratory failure. Such findings confirm the importance of CTGF/CCN-2 in development and of the necessary and sufficient role of this molecule in formation of the skeleton, extracellular matrix and chondrogenesis. Of particular relevance to the relationship between the notochordal cell and CTGF/CCN-2 there is a remarkable sub-species of canine, the ‘non-chondrodystrophic’ canine that is protected from developing degenerative disc disease (DDD). These animals are unique in that they preserve the population of notochordal cells within their disc nucleus (NP) and these cells secrete CTGF/CCN-2. We have detected CTGF/CCN-2 within conditioned medium developed from the notochordal cells of these animals (NCCM) and used this conditioned medium to demonstrate robustly increased proteoglycan production. The addition of recombinant human CTGF/CCN-2 to totally serum-free media containing cultures of bovine NP cells replicated the robustly increased aggrecan gene expression found with NCCM alone strongly suggesting the importance of the effect of CTGF/CCN-2 in notochordal cell biology within the disc nucleus of non-chondrodystrophic canines. The chondrodystrophic canine, another sub-species on the other hand are almost totally devoid of notochordal cells and they develop DDD profoundly and early. These two sub-species of canine reflect a naturally occurring animal model that is an excellent example of differential notochordal cell survival and possible associated developmental differences in extracellular maintenance

    Swift: A modern highly-parallel gravity and smoothed particle hydrodynamics solver for astrophysical and cosmological applications

    Get PDF
    Numerical simulations have become one of the key tools used by theorists in all the fields of astrophysics and cosmology. The development of modern tools that target the largest existing computing systems and exploit state-of-the-art numerical methods and algorithms is thus crucial. In this paper, we introduce the fully open-source highly-parallel, versatile, and modular coupled hydrodynamics, gravity, cosmology, and galaxy-formation code Swift. The software package exploits hybrid shared- and distributed-memory task-based parallelism, asynchronous communications, and domain-decomposition algorithms based on balancing the workload, rather than the data, to efficiently exploit modern high-performance computing cluster architectures. Gravity is solved for using a fast-multipole-method, optionally coupled to a particle mesh solver in Fourier space to handle periodic volumes. For gas evolution, multiple modern flavours of Smoothed Particle Hydrodynamics are implemented. Swiftalso evolves neutrinos using a state-of-the-art particle-based method. Two complementary networks of sub-grid models for galaxy formation as well as extensions to simulate planetary physics are also released as part of the code. An extensive set of output options, including snapshots, light-cones, power spectra, and a coupling to structure finders are also included. We describe the overall code architecture, summarise the consistency and accuracy tests that were performed, and demonstrate the excellent weak-scaling performance of the code using a representative cosmological hydrodynamical problem with ≈300 billion particles. The code is released to the community alongside extensive documentation for both users and developers, a large selection of example test problems, and a suite of tools to aid in the analysis of large simulations run with Swift

    Swift: A modern highly-parallel gravity and smoothed particle hydrodynamics solver for astrophysical and cosmological applications

    Full text link
    Numerical simulations have become one of the key tools used by theorists in all the fields of astrophysics and cosmology. The development of modern tools that target the largest existing computing systems and exploit state-of-the-art numerical methods and algorithms is thus crucial. In this paper, we introduce the fully open-source highly-parallel, versatile, and modular coupled hydrodynamics, gravity, cosmology, and galaxy-formation code Swift. The software package exploits hybrid task-based parallelism, asynchronous communications, and domain-decomposition algorithms based on balancing the workload, rather than the data, to efficiently exploit modern high-performance computing cluster architectures. Gravity is solved for using a fast-multipole-method, optionally coupled to a particle mesh solver in Fourier space to handle periodic volumes. For gas evolution, multiple modern flavours of Smoothed Particle Hydrodynamics are implemented. Swift also evolves neutrinos using a state-of-the-art particle-based method. Two complementary networks of sub-grid models for galaxy formation as well as extensions to simulate planetary physics are also released as part of the code. An extensive set of output options, including snapshots, light-cones, power spectra, and a coupling to structure finders are also included. We describe the overall code architecture, summarize the consistency and accuracy tests that were performed, and demonstrate the excellent weak-scaling performance of the code using a representative cosmological hydrodynamical problem with ≈\approx300300 billion particles. The code is released to the community alongside extensive documentation for both users and developers, a large selection of example test problems, and a suite of tools to aid in the analysis of large simulations run with Swift.Comment: 39 pages, 18 figures, submitted to MNRAS. Code, documentation, and examples available at www.swiftsim.co
    • …
    corecore