147 research outputs found

    Acute Sensitivity of Landslide Rates to Initial Soil Porosity

    Get PDF
    Some landslides move imperceptibly downslope, whereas others accelerate catastrophically. Experimental landslides triggered by rising pore water pressure moved at sharply contrasting rates due to small differences in initial porosity. Wet sandy soil with porosity of about 0.5 contracted during slope failure, partially liquefied, and accelerated within 1 second to speeds over 1 meter per second. The same soil with porosity of about 0.4 dilated during failure and slipped episodically at rates averaging 0.002 meter per second. Repeated slip episodes were induced by gradually rising pore water pressure and were arrested by pore dilation and attendant pore pressure decline

    The Landscape in 2025: Alternative Future Landscape Scenarios, A Means to Consider Agricultural Policy

    Full text link
    Agricultural policy implies new future scenarios for agricultural landscapes each time a new federal farm bill or emergency aid to farmers is debated. Future landscape scenario studies can suggest policies that could achieve specific goals or make the implications of proposed policy apparent. This paper compares the 1994 landscape with three alternative future landscape scenarios for two Iowa Corn Belt agricultural watersheds. Each alternative emphasizes different ecological, hydrological, and and crop production goals.USEPA Science to Achieve Results (STAR) programPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/49342/1/JSWC57_Nassauer.pd

    Measuring Basal Force Fluctuations of Debris Flows Using Seismic Recordings and Empirical Green's Functions

    Get PDF
    We present a novel method for measuring the fluctuating basal normal and shear stresses of debris flows by using along‐channel seismic recordings. Our method couples a simple parameterization of a debris flow as a seismic source with direct measurements of seismic path effects using empirical Green's functions generated with a force hammer. We test this method using two large‐scale (8 and 10 m³) experimental flows at the U.S. Geological Survey debris‐flow flume that were recorded by dozens of three‐component seismic sensors. The seismically derived basal stress fluctuations compare well in amplitude and timing to independent force plate measurements within the valid frequency range (15–50 Hz). We show that although the high‐frequency seismic signals provide band‐limited forcing information, there are systematic relations between the fluctuating stresses and independently measured flow properties, especially mean basal shear stress and flow thickness. However, none of the relationships are simple, and since the flow properties also correlate with one another, we cannot isolate a single factor that relates in a simple way to the fluctuating forces. Nevertheless, our observations, most notably the gradually declining ratio of fluctuating to mean basal stresses during flow passage and the distinctive behavior of the coarse, unsaturated flow front, imply that flow style may be a primary control on the conversion of translational to vibrational kinetic energy. This conversion ultimately controls the radiation of high‐frequency seismic waves. Thus, flow style may provide the key to revealing the nature of the relationship between fluctuating forces and other flow properties

    Measuring Basal Force Fluctuations of Debris Flows Using Seismic Recordings and Empirical Green's Functions

    Get PDF
    We present a novel method for measuring the fluctuating basal normal and shear stresses of debris flows by using along‐channel seismic recordings. Our method couples a simple parameterization of a debris flow as a seismic source with direct measurements of seismic path effects using empirical Green's functions generated with a force hammer. We test this method using two large‐scale (8 and 10 m³) experimental flows at the U.S. Geological Survey debris‐flow flume that were recorded by dozens of three‐component seismic sensors. The seismically derived basal stress fluctuations compare well in amplitude and timing to independent force plate measurements within the valid frequency range (15–50 Hz). We show that although the high‐frequency seismic signals provide band‐limited forcing information, there are systematic relations between the fluctuating stresses and independently measured flow properties, especially mean basal shear stress and flow thickness. However, none of the relationships are simple, and since the flow properties also correlate with one another, we cannot isolate a single factor that relates in a simple way to the fluctuating forces. Nevertheless, our observations, most notably the gradually declining ratio of fluctuating to mean basal stresses during flow passage and the distinctive behavior of the coarse, unsaturated flow front, imply that flow style may be a primary control on the conversion of translational to vibrational kinetic energy. This conversion ultimately controls the radiation of high‐frequency seismic waves. Thus, flow style may provide the key to revealing the nature of the relationship between fluctuating forces and other flow properties

    Overcoming High Energy Backgrounds at Pulsed Spallation Sources

    Full text link
    Instrument backgrounds at neutron scattering facilities directly affect the quality and the efficiency of the scientific measurements that users perform. Part of the background at pulsed spallation neutron sources is caused by, and time-correlated with, the emission of high energy particles when the proton beam strikes the spallation target. This prompt pulse ultimately produces a signal, which can be highly problematic for a subset of instruments and measurements due to the time-correlated properties, and different to that from reactor sources. Measurements of this background have been made at both SNS (ORNL, Oak Ridge, TN, USA) and SINQ (PSI, Villigen, Switzerland). The background levels were generally found to be low compared to natural background. However, very low intensities of high-energy particles have been found to be detrimental to instrument performance in some conditions. Given that instrument performance is typically characterised by S/N, improvements in backgrounds can both improve instrument performance whilst at the same time delivering significant cost savings. A systematic holistic approach is suggested in this contribution to increase the effectiveness of this. Instrument performance should subsequently benefit.Comment: 12 pages, 8 figures. Proceedings of ICANS XXI (International Collaboration on Advanced Neutron Sources), Mito, Japan. 201

    Exploration Technologies for Operations

    Get PDF
    Although the International Space Station (ISS) assembly has been completed, the Operations support teams continue to seek more efficient and effective ways to prepare for and conduct the ISS operations and future exploration missions beyond low earth orbit. This search for improvement has led to a significant collaboration between the NASA research and advanced software development community at NASA Ames Research Center and the Mission Operations community at NASA Johnson Space Center. Since 2001, NASA Ames Research Center has been developing and applying its advanced intelligent systems and human systems integration research to mission operations tools for several of the unmanned Mars missions operations. Since 2006, NASA Ames Research Center has also been developing and applying its advanced intelligent systems and human systems integration research to mission operations tools for manned operations support with the Mission Operations Directorate at NASA Johnson Space Center. This paper discusses the completion of the development and deployment of a variety of intelligent and human systems technologies adopted for manned mission operations. The technologies associated with the projects include advanced software systems for operations and human-centered computing. Human-centered computing looks to the processes and procedures that people do to perform any given job, then attempts to identify opportunities to improve these processes and procedures. In particular, for mission operations, improvements are quantified by specifically identifying how a tool can increase a persons efficiency, enhance a persons functional capability, andor improve the assurance of a persons decisions. The Ames development team has collaborated with the Mission Operations team to identify areas of efficiencies through technology infusion applications in support of the Plan, Train, and Fly activities of human-spaceflight mission operations. The specific applications discussed in this paper are in the areas of mission planning systems, mission operations design modeling and workflow automation, advanced systems monitoring, mission control technologies, search tools, training management tools, spacecraft solar array management, spacecraft power management, and spacecraft attitude planning. We discuss these specific projects between the Ames Research Center and the Johnson Space Centers Mission Operations Directorate, and how these technologies and projects are enhancing the mission operations support for the International Space Station. We also discuss the challenges, problems, and successes associated with long-distance and multi-year development projects between the research team at Ames and the Mission Operations customers at Johnson Space center. Finally, we discuss how these technology infusion applications and underlying technologies might be used in the future to support on-board operations of the crew and spacecraft systems as human exploration expands beyond low earth orbit to destinations in the solar system where communications delays will require more on-board autonomy and planning by the crew. Longer communications delays will require that the ground mission operations support will be primarily strategic in nature, while the tactical level of planning, systems monitoring and control, and failure analysisisolationrecovery will be the responsibility of both the spacecraft autonomous systems and the crew. Our expectation is that the technologie

    Observation of the Askaryan Effect: Coherent Microwave Cherenkov Emission from Charge Asymmetry in High Energy Particle Cascades

    Get PDF
    We present the first direct experimental evidence for the charge excess in high energy particle showers predicted nearly 40 years ago by Askaryan. We directed bremsstrahlung photons from picosecond pulses of 28.5 GeV electrons at the SLAC Final Focus Test Beam facility into a 3.5 ton silica sand target, producing electromagnetic showers several meters long. A series of antennas spanning 0.3 to 6 GHz were used to detect strong, sub-nanosecond radio frequency pulses produced whenever a shower was present. The measured electric field strengths are consistent with a completely coherent radiation process. The pulses show 100% linear polarization, consistent with the expectations of Cherenkov radiation. The field strength versus depth closely follows the expected particle number density profile of the cascade, consistent with emission from excess charge distributed along the shower. These measurements therefore provide strong support for experiments designed to detect high energy cosmic rays and neutrinos via coherent radio emission from their cascades.Comment: 10 pages, 4 figures. Submitted to Phys. Rev. Let
    corecore