66 research outputs found

    Population ecology of Psammobates oculifer in a semi-arid environment

    Get PDF
    We studied the ecology of Psammobates oculifer over 13 months near Kimberley, South Africa, to ascertain if the population’s life history traits conform to chelonian patterns in arid environments. Capture rates were highest in spring and lowest in winter when environmental conditions were respectively most and least favourable for tortoise activity. Body condition did not change from autumn to spring, but reached lower values during the summer drought. Capture effort averaged 5 hours/tortoise, which corresponds closely to that of species with low population densities in arid regions. Population size structure was skewed towards adults, indicative of low recruitment and/or low juvenile survivorship. Females were larger and heavier than males, confirming sexual dimorphism in this species. Body size of cohorts scaled to annuli counts, indicating a close correspondence between body size and age. Telemetered adults deposited one or no growth ring in the year of study; consequently, annuli counts could underestimate adult age. Regression analyses showed that male and female growth rates did not differ, but males matured at a smaller size and younger age than females. The smallest male showing reproductive behaviour had 12 annuli and a shell volume of 157 cm3, while similar measures for females were 14 annuli and 185 cm3. The sex ratio of the population did not differ from 1:1 but the bias towards males in spring, and towards females in autumn, indicates that studies limited to particular seasons can misrepresent life history traits of populations. We concluded that the life history of P. oculifer conforms to chelonian patterns in arid regions.Web of Scienc

    The Physics of the B Factories

    Get PDF

    Life history constrains biochemical development in the highly specialized odontocete echolocation system

    No full text
    The vertebrate head has undergone enormous modification from the features borne by early ancestors. The growth of skull bones has been well studied in many species, yet little is known about corresponding soft tissue development. Among mammals, some of the most unusual examples of cranial evolution exist in the toothed whales (odontocetes). Specialized fat bodies in toothed whale heads play important roles in sound transmission and reception. These fat bodies contain unique endogenous lipids, with favourable acoustic properties, arranged in highly organized, three-dimensional patterns. We link variation in developmental rates of acoustic fats with life-history strategy, using bottlenose dolphins and harbour porpoises. Porpoise acoustic fats attain adult configurations earlier (less than 1 year) and at a faster pace than dolphins. The accelerated lipid accumulation in porpoises reflects the earlier need for fully functional echolocation systems. Dolphins enjoy 3–6 years of maternal care; porpoises must achieve total independence by approximately nine months. Further, a stereotypic ‘blueprint’ for the spatial distribution of lipids is established prior to birth, demonstrating the highly conserved nature of the intricate biochemical arrangement in acoustic tissues. This system illustrates an unusual case of soft tissue development being constrained by life history, rather than the more commonly observed mechanistic or phyletic constraints
    corecore