86 research outputs found
The nature of diene conjugation in human serum, bile and duodenal juice
AbstractDiene-conjugated lipids have been located by HPLC in serum, bile and duodenal juice. Whether esterified or not the same predominant fatty acid is responsible for most of the diene conjugation in all of these biological fluids. Initial attempts to generate this fatty acid in pure lipid by classical lipid peroxidation in vitro were unsuccessful. Ultraviolet irradiation of free fatty acids in the presence of protein produced diene-conjugated lipids similar to those found in vivo. The predominant diene-conjugated fatty acid in vivo is an isomerised C18:2 compound
On the minimization of Dirichlet eigenvalues of the Laplace operator
We study the variational problem \inf \{\lambda_k(\Omega): \Omega\
\textup{open in}\ \R^m,\ |\Omega| < \infty, \ \h(\partial \Omega) \le 1 \},
where is the 'th eigenvalue of the Dirichlet Laplacian
acting in , \h(\partial \Omega) is the - dimensional
Hausdorff measure of the boundary of , and is the Lebesgue
measure of . If , and , then there exists a convex
minimiser . If , and if is a minimiser,
then is also a
minimiser, and is connected. Upper bounds are
obtained for the number of components of . It is shown that if
, and then has at most components.
Furthermore is connected in the following cases : (i) (ii) and (iii) and (iv) and
. Finally, upper bounds on the number of components are obtained for
minimisers for other constraints such as the Lebesgue measure and the torsional
rigidity.Comment: 16 page
Suspended particles are hotspots of microbial remineralization in the ocean's twilight zone
The sinking of photosynthetically produced organic carbon from the ocean surface to its interior is a significant term in the global carbon cycle. Most sinking organic carbon is, however, remineralized in the mesopelagic zone (âŒ100 mâ1000 m), thereby exerting control over ocean-atmosphere carbon dioxide (CO2) partitioning and hence global climate. Sinking particles are considered hotspots of microbial respiration in the dark ocean. However, our observations in the contrasting Scotia Sea and the Benguela Current show that >90% of microbial remineralisation is associated with suspended, rather than sinking, organic matter, resulting in rapid turnover of the suspended carbon pool and demonstrating its central role in mesopelagic carbon cycling. A non-steady-state model indicates that temporally variable particle fluxes, particle injection pumps and local chemoautotrophy are necessary to help balance the observed mesopelagic respiration. Temperature and oxygen exert control over microbial respiration, particularly for the suspended fraction, further demonstrating the susceptibility of microbial remineralisation to the ongoing decline in oxygen at mid-ocean depths. These observations suggest a partial decoupling of carbon cycling between non-sinking and fast-sinking organic matter, challenging our understanding of how oceanic biological processes regulate climate
Reading religion in Norwegian textbooks: are individual religions ideas or people?
Different religions are treated in different ways in Norwegian sixth form textbooks. We carried out an exhaustive content analysis of the chapters devoted to individual religions in textbooks for the Religion and Ethics course currently available in Norway, using rigorous indicators to code each word, image and question according to whether they were treated the religion as a set of ideas or a group of people. After adjusting for trends in the different kinds of data (word, image, question), we found that Buddhism and Christianity receive significantly more attention for their ideas than Hinduism, Islam and Judaism, which are treated more as people. This difference cannot be explained by the national syllabus or the particularities of the individual religions. The asymmetry also has implications for the pupilsâ academic, moral and pedagogical agency for which teachers play a critical role in compensating.acceptedVersio
Vertical imbalance in organic carbon budgets is indicative of a missing vertical transfer during a phytoplankton bloom near South Georgia (COMICS)
The biological carbon pump, driven principally by surface production and sinking of organic matter to deep water and its subsequent remineralization to CO2 maintains atmospheric CO2 around 200âŻppm lower than it would be if the ocean were abiotic. One important driver of the magnitude of this effect is the depth to which organic matter sinks before it is remineralised, a parameter we have limited confidence in measuring given the difficulty involved in balancing sources and sinks in the ocean's interior. This imbalance is due, in part, to our inability to measure respiration directly and our reliance on radiotracer-based proxies. One solution to these problems might be a temporal offset in which organic carbon accumulates in the mesopelagic zone (100â1000âŻm depth) early in the productive season prior to it being consumed later, a situation which could lead to a net apparent sink occurring if a steady state assumption is applied as is often the approach. In this work, we develop a novel accounting method to address this issue, independent of respiration measurements, by estimating fluxes into and accumulation within distinct vertical layers in the mesopelagic. We apply this approach to a time series of measurements of particle sinking velocities and interior organic carbon concentrations made during the declining phase of a large diatom bloom in a low-circulation region of the Southern Ocean downstream of South Georgia. Our data show that the major export event led to a significant accumulation of organic matter in the upper mesopelagic (100â200âŻm depth) which declined over several weeks, implying that temporal offsets need to be considered when compiling budgets. However, even when accounting for this accumulation, a mismatch in the vertically resolved organic carbon budget remained, implying that there are likely widespread processes that we do not yet understand that redistribute material vertically in the mesopelagic
Population genomics of post-glacial western Eurasia.
Western Eurasia witnessed several large-scale human migrations during the Holocene <sup>1-5</sup> . Here, to investigate the cross-continental effects of these migrations, we shotgun-sequenced 317 genomes-mainly from the Mesolithic and Neolithic periods-from across northern and western Eurasia. These were imputed alongside published data to obtain diploid genotypes from more than 1,600 ancient humans. Our analyses revealed a 'great divide' genomic boundary extending from the Black Sea to the Baltic. Mesolithic hunter-gatherers were highly genetically differentiated east and west of this zone, and the effect of the neolithization was equally disparate. Large-scale ancestry shifts occurred in the west as farming was introduced, including near-total replacement of hunter-gatherers in many areas, whereas no substantial ancestry shifts happened east of the zone during the same period. Similarly, relatedness decreased in the west from the Neolithic transition onwards, whereas, east of the Urals, relatedness remained high until around 4,000 BP, consistent with the persistence of localized groups of hunter-gatherers. The boundary dissolved when Yamnaya-related ancestry spread across western Eurasia around 5,000 BP, resulting in a second major turnover that reached most parts of Europe within a 1,000-year span. The genetic origin and fate of the Yamnaya have remained elusive, but we show that hunter-gatherers from the Middle Don region contributed ancestry to them. Yamnaya groups later admixed with individuals associated with the Globular Amphora culture before expanding into Europe. Similar turnovers occurred in western Siberia, where we report new genomic data from a 'Neolithic steppe' cline spanning the Siberian forest steppe to Lake Baikal. These prehistoric migrations had profound and lasting effects on the genetic diversity of Eurasian populations
TRY plant trait database â enhanced coverage and open access
Plant traitsâthe morphological, anatomical, physiological, biochemical and phenological characteristics of plantsâdetermine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of traitâbased plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traitsâalmost complete coverage for âplant growth formâ. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and traitâenvironmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
- âŠ