16 research outputs found

    Bradykinin and adenosine receptors mediate desflurane induced postconditioning in human myocardium: role of reactive oxygen species

    Get PDF
    BACKGROUND: Desflurane during early reperfusion has been shown to postcondition human myocardium, in vitro. We investigated the role of adenosine and bradykinin receptors, and generation of radical oxygen species in desflurane-induced postconditioning in human myocardium. METHODS: We recorded isometric contraction of human right atrial trabeculae hanged in an oxygenated Tyrode's solution (34 degrees Celsius, stimulation frequency 1 Hz). After a 30-min hypoxic period, desflurane 6% was administered during the first 5 min of reoxygenation. Desflurane was administered alone or with pretreatment of N-mercaptopropionylglycine, a reactive oxygen species scavenger, 8-(p-Sulfophenyl)theophylline, an adenosine receptor antagonist, HOE140, a selective B2 bradykinin receptor antagonist. In separate groups, adenosine and bradykinin were administered during the first minutes of reoxygenation alone or in presence of N-mercaptopropionylglycine. The force of contraction of trabeculae was recorded continuously. Developed force at the end of a 60-min reoxygenation period was compared (mean +/- standard deviation) between the groups by a variance analysis and post hoc test. RESULTS: Desflurane 6% (84 +/- 6% of baseline) enhanced the recovery of force after 60-min of reoxygenation as compared to control group (51 +/- 8% of baseline, P < 0.0001). N-mercaptopropionylglycine (54 +/- 3% of baseline), 8-(p-Sulfophenyl)theophylline (62 +/- 9% of baseline), HOE140 (58 +/- 6% of baseline) abolished desflurane-induced postconditioning. Adenosine (80 +/- 9% of baseline) and bradykinin (83 +/- 4% of baseline) induced postconditioning (P < 0.0001 vs control), N-mercaptopropionylglycine abolished the beneficial effects of adenosine and bradykinin (54 +/- 8 and 58 +/- 5% of baseline, respectively). CONCLUSIONS: In vitro, desflurane-induced postconditioning depends on reactive oxygen species production, activation of adenosine and bradykinin B2 receptors. And, the cardioprotective effect of adenosine and bradykinin administered at the beginning of reoxygenation, was mediated, at least in part, through ROS production

    Bradykinin and adenosine receptors mediate desflurane induced postconditioning in human myocardium: role of reactive oxygen species

    No full text
    Abstract Background Desflurane during early reperfusion has been shown to postcondition human myocardium, in vitro. We investigated the role of adenosine and bradykinin receptors, and generation of radical oxygen species in desflurane-induced postconditioning in human myocardium. Methods We recorded isometric contraction of human right atrial trabeculae hanged in an oxygenated Tyrode's solution (34 degrees Celsius, stimulation frequency 1 Hz). After a 30-min hypoxic period, desflurane 6% was administered during the first 5 min of reoxygenation. Desflurane was administered alone or with pretreatment of N-mercaptopropionylglycine, a reactive oxygen species scavenger, 8-(p-Sulfophenyl)theophylline, an adenosine receptor antagonist, HOE140, a selective B2 bradykinin receptor antagonist. In separate groups, adenosine and bradykinin were administered during the first minutes of reoxygenation alone or in presence of N-mercaptopropionylglycine. The force of contraction of trabeculae was recorded continuously. Developed force at the end of a 60-min reoxygenation period was compared (mean ± standard deviation) between the groups by a variance analysis and post hoc test. Results Desflurane 6% (84 ± 6% of baseline) enhanced the recovery of force after 60-min of reoxygenation as compared to control group (51 ± 8% of baseline, P N-mercaptopropionylglycine (54 ± 3% of baseline), 8-(p-Sulfophenyl)theophylline (62 ± 9% of baseline), HOE140 (58 ± 6% of baseline) abolished desflurane-induced postconditioning. Adenosine (80 ± 9% of baseline) and bradykinin (83 ± 4% of baseline) induced postconditioning (P vs control), N-mercaptopropionylglycine abolished the beneficial effects of adenosine and bradykinin (54 ± 8 and 58 ± 5% of baseline, respectively). Conclusions In vitro, desflurane-induced postconditioning depends on reactive oxygen species production, activation of adenosine and bradykinin B2 receptors. And, the cardioprotective effect of adenosine and bradykinin administered at the beginning of reoxygenation, was mediated, at least in part, through ROS production.</p

    A complex mitral valve reconstruction: a case report

    No full text
    Several techniques are currently in use for mitral valve reconstruction. We report a mitral repair case in which the use of a combination of different surgical techniques resulted in the necessary correction. A 47-year-old woman underwent surgical intervention to treat severe mitral valve insufficiency due to A1/A2/A3 and P2 prolapsed valve tissue. A combination of quadrangular resection, sliding leaflet, single chordal transposition, "flip-over" leaflet, and ring annuloplasty techniques were applied, and postsurgical correct valve function was documented by results of a left ventricular saline filling test and transesophageal echocardiography control. Complex mitral valve repairing techniques can be combined to reestablish valvular function

    Signaling pathways involved in postconditioning-induced cardioprotection of human myocardium, in vitro

    No full text
    We examined the respective role and relationship between protein kinase C (PKC), mitochondrial adenosine triphosphate-sensitive potassium (mitoK(ATP)) channel and p38 mitogen-activated protein kinase (MAPK) in postconditioning of human myocardium, in vitro. Isometrically contracting, isolated human right atrial trabeculae were exposed to 30 min hypoxia and 60 min reoxygenation. Phorbol 12-myristate 13-acetate (a PKC activator), diazoxide (a mitoK(ATP) opener) and anisomycin (a p38 MAPK activator) were superfused in early reoxygenation alone and with calphostin C (a PKC inhibitor), 5-hydroxy-decanoate (5-HD, a mitoK(ATP) channel inhibitor) and SB 202190 (a p38 MAPK inhibitor). Developed force at the end of the 60 min reoxygenation (FoC(60)) period was compared between groups (mean +/- SD). Phorbol 12-myristate 13-acetate (91 +/- 4% of baseline), diazoxide (85 +/- 5% of baseline) and anisomycin (90 +/- 4% of baseline) enhanced the FoC(60) as compared with the control group (53 +/- 7% of baseline, P < 0.0001). The enhanced FoC(60) induced by phorbol 12-myristate 13-acetate was abolished by calphostin C (52 +/- 5% of baseline) and 5-HD (56 +/- 3% of baseline), but not by SB 202190 (90 +/- 8%). The diazoxide-induced recovery of FoC(60) was attenuated by 5-HD (55 +/- 6% of baseline), but was not modified by calphostin C (87 +/- 5% of baseline) and SB 202190 (90 +/- 8% of baseline). The anisomycin-induced recovery of FoC(60) was abolished by calphostin C (61 +/- 9% of baseline) and SB 202190 (52 +/- 8% of baseline), but not by 5-HD (88 +/- 6% of baseline). In conclusion, PKC activation, opening of mitoK(ATP) channels and p38 MAPK activation in early reoxygenation induced the postconditioning of human myocardium, in vitro. Furthermore, PKC activation was upstream of the opening of mitoK(ATP) channels; p38 MAPK acted on PKC. Therefore, mitoK(ATP) and p38 MAPK seemed to be involved in two independent pathways

    Signaling pathways involved in postconditioning-induced cardioprotection of human myocardium, in vitro

    No full text
    We examined the respective role and relationship between protein kinase C (PKC), mitochondrial adenosine triphosphate-sensitive potassium (mitoK(ATP)) channel and p38 mitogen-activated protein kinase (MAPK) in postconditioning of human myocardium, in vitro. Isometrically contracting, isolated human right atrial trabeculae were exposed to 30 min hypoxia and 60 min reoxygenation. Phorbol 12-myristate 13-acetate (a PKC activator), diazoxide (a mitoK(ATP) opener) and anisomycin (a p38 MAPK activator) were superfused in early reoxygenation alone and with calphostin C (a PKC inhibitor), 5-hydroxy-decanoate (5-HD, a mitoK(ATP) channel inhibitor) and SB 202190 (a p38 MAPK inhibitor). Developed force at the end of the 60 min reoxygenation (FoC(60)) period was compared between groups (mean +/- SD). Phorbol 12-myristate 13-acetate (91 +/- 4% of baseline), diazoxide (85 +/- 5% of baseline) and anisomycin (90 +/- 4% of baseline) enhanced the FoC(60) as compared with the control group (53 +/- 7% of baseline, P < 0.0001). The enhanced FoC(60) induced by phorbol 12-myristate 13-acetate was abolished by calphostin C (52 +/- 5% of baseline) and 5-HD (56 +/- 3% of baseline), but not by SB 202190 (90 +/- 8%). The diazoxide-induced recovery of FoC(60) was attenuated by 5-HD (55 +/- 6% of baseline), but was not modified by calphostin C (87 +/- 5% of baseline) and SB 202190 (90 +/- 8% of baseline). The anisomycin-induced recovery of FoC(60) was abolished by calphostin C (61 +/- 9% of baseline) and SB 202190 (52 +/- 8% of baseline), but not by 5-HD (88 +/- 6% of baseline). In conclusion, PKC activation, opening of mitoK(ATP) channels and p38 MAPK activation in early reoxygenation induced the postconditioning of human myocardium, in vitro. Furthermore, PKC activation was upstream of the opening of mitoK(ATP) channels; p38 MAPK acted on PKC. Therefore, mitoK(ATP) and p38 MAPK seemed to be involved in two independent pathways

    Less invasive radial artery harvesting: Two years' experience

    No full text
    Background. For coronary surgery we often use the radial artery (RA) instead of the saphenous vein, trying to exploit the advantages offered by this conduit. To eliminate the problems regarding alteration of upper-extremity function after RA procurement related to the standard conventional harvesting technique, we started using the less invasive harvesting technique with surprisingly good preliminary results. To compare the outcomes of open versus less invasive harvesting procedures, a prospective, nonrandomized study was developed by 2 centers. Methods. From January 2001 to March 2003, there were 87 consecutive patients in the less invasive radial artery harvesting (LIRAH) group and 90 patients in the conventional radial artery harvesting (CRAH) group. Patient characteristics and demographics were similar in the groups. Data collection was made to evaluate possible benefits of the LIRAH technique in terms of fewer forearm and hand complications, better aesthetics, and improved patient satisfaction. Results. Between January 11, 2001, and March 30, 2003, 177 patients underwent either primary or redo coronary artery revascularizations with, procurement of the RA for use as a conduit with the less invasive harvesting technique. The mean follow-up was 2 months. Four patients died, and overall mortality was 2.26%. One hundred seventy-three patients were successfully examined during the first postoperative control, 85 in the LIRAH group and 88 patients in the CRAH group. Objective and subjective data were collected from the consultant. The overall average age was 60.5 years (range, 40-77 years). In the LIRAH group, the mean overall incision length (when 2 incisions were necessary, both, incision lengths were measured) was 5.6 cm (range, 4-10 cm), and the mean vessel length was 16 cm (range, 10-19 cm). Eighteen patients (20.6%) necessitated double incision. Mean harvesting time (from incision to skin closure) was 43.3 min (range, 25-70 min). Fourteen patients (16.4%) presented some kind of complication during the study. There were no cases with, acute ischemia, bleeding, or re-exploration. Seventy-five patients (88.2%) found the cosmetic result excellent. Ten patients (11.8%) found it good, and none considered it mediocre. In the CRAH group, the mean incision length was 20 cm (range, 18-22 cm), and the mean vessel length was 18 cm (range, 17-20 cm ). Mean harvesting time (from incision to skin closure) was 30.8 min (range, 14-45 min). Thirty-four patients (38.6%) presented some kind of complication during the study. Three patients (3.5%) found the cosmetic result excellent. Forty-three (48.8%) found it good, and 42 (47.7%) considered it mediocre. Conclusions. A potential of fewer neurological forearm postoperative complications, better aesthetics, and improved patient satisfaction can be achieved by the LIRAH technique. \ua9 2005 Forum Multimedia Publishing, LLC
    corecore