2 research outputs found

    Targeting Carnitine Biosynthesis: Discovery of New Inhibitors against γ‑Butyrobetaine Hydroxylase

    No full text
    γ-Butyrobetaine hydroxylase (BBOX) catalyzes the conversion of gamma butyrobetaine (GBB) to l-carnitine, which is involved in the generation of metabolic energy from long-chain fatty acids. BBOX inhibitor 3-(1,1,1-trimethylhydrazin-1-ium-2-yl)­propanoate (mildronate), which is an approved, clinically used cardioprotective drug, is a relatively poor BBOX inhibitor and requires high daily doses. In this paper we describe the design, synthesis, and properties of 51 compounds, which include both GBB and mildronate analogues. We have discovered novel BBOX inhibitors with improved IC<sub>50</sub> values; the best examples are in the nanomolar range and about 2 orders of magnitude better when compared to mildronate. For six inhibitors, crystal structures in complex with BBOX have been solved to explain their activities and pave the way for further inhibitor design

    Nicotinamide Phosphoribosyltransferase Inhibitors, Design, Preparation, and Structure–Activity Relationship

    No full text
    Existing pharmacological inhibitors for nicotinamide phosphoribosyltransferase (NAMPT) are promising therapeutics for treating cancer. By using medicinal and computational chemistry methods, the structure–activity relationship for novel classes of NAMPT inhibitors is described, and the compounds are optimized. Compounds are designed inspired by the NAMPT inhibitor APO866 and cyanoguanidine inhibitor scaffolds. In comparison with recently published derivatives, the new analogues exhibit an equally potent antiproliferative activity in vitro and comparable activity in vivo. The best performing compounds from these series showed subnanomolar antiproliferative activity toward a series of cancer cell lines (compound <b>15</b>: IC<sub>50</sub> 0.025 and 0.33 nM, in A2780 (ovarian carcinoma) and MCF-7 (breast), respectively) and potent antitumor in vivo activity in well-tolerated doses in a xenograft model. In an A2780 xenograft mouse model with large tumors (500 mm<sup>3</sup>), compound <b>15</b> reduced the tumor volume to one-fifth of the starting volume at a dose of 3 mg/kg administered ip, bid, days 1–9. Thus, compounds found in this study compared favorably with compounds already in the clinic and warrant further investigation as promising lead molecules for the inhibition of NAMPT
    corecore