9 research outputs found

    Anisotropic solutions for R2R^2 gravity model with a scalar field

    Full text link
    We study anisotropic solutions for the pure R2R^2 gravity model with a scalar field in the Bianchi I metric. The evolution equations have a singularity at zero value of the Ricci scalar RR for anisotropic solutions, whereas these equations are smooth for isotropic solutions. So, there is no anisotropic solution with the Ricci scalar smoothly changing its sign during evolution. We have found anisotropic solutions using the conformal transformation of the metric and the Einstein frame. The general solution in the Einstein frame has been found explicitly. The corresponding solution in the Jordan frame has been constructed in quadratures.Comment: 13 pages, accepted for publication in Phys. Atom. Nucle

    Unusual magnetoelectric effect in paramagnetic rare-earth langasite

    Get PDF
    Violation of time reversal and spatial inversion symmetries has profound consequences for elementary particles and cosmology. Spontaneous breaking of these symmetries at phase transitions gives rise to unconventional physical phenomena in condensed matter systems, such as ferroelectricity induced by magnetic spirals, electromagnons, non-reciprocal propagation of light and spin waves, and the linear magnetoelectric (ME) effect - the electric polarization proportional to the applied magnetic field and the magnetization induced by the electric field. Here, we report the experimental study of the holmium-doped langasite, Hox_{x}La3x_{3-x}Ga5_5SiO14_{14}, showing a puzzling combination of linear and highly non-linear ME responses in the disordered paramagnetic state: its electric polarization grows linearly with the magnetic field but oscillates many times upon rotation of the magnetic field vector. We propose a simple phenomenological Hamiltonian describing this unusual behavior and derive it microscopically using the coupling of magnetic multipoles of the rare-earth ions to the electric field.Comment: 8 pages, 3 figure

    Electrospun magnetic composite poly-3-hydroxybutyrate/magnetite scaffolds for biomedical applications: composition, structure, magnetic properties, and biological performance

    Get PDF
    Magnetically responsive composite polymer scaffolds have good potential for a variety of biomedical applications. In this work, electrospun composite scaffolds made of polyhydroxybutyrate (PHB) and magnetite (Fe3O4) particles (MPs) were studied before and after degradation in either PBS or a lipase solution. MPs of different sizes with high saturation magnetization were synthesized by the coprecipitation method followed by coating with citric acid (CA). Nanosized MPs were prone to magnetite-maghemite phase transformation during scaffold fabrication, as revealed by Raman spectroscopy; however, for CA-functionalized nanoparticles, the main phase was found to be magnetite, with some traces of maghemite. Submicron MPs were resistant to the magnetite-maghemite phase transformation. MPs did not significantly affect the morphology and diameter of PHB fibers. The scaffolds containing CA-coated MPs lost 0.3 or 0.2% of mass in the lipase solution and PBS, respectively, whereas scaffolds doped with unmodified MPs showed no mass changes after 1 month of incubation in either medium. In all electrospun scaffolds, no alterations of the fiber morphology were observed. Possible mechanisms of the crystalline-lamellar-structure changes in hybrid PHB/Fe3O4 scaffolds during hydrolytic and enzymatic degradation are proposed. It was revealed that particle size and particle surface functionalization affect the mechanical properties of the hybrid scaffolds. The addition of unmodified MPs increased scaffolds' ultimate strength but reduced elongation at break after the biodegradation, whereas simultaneous increases in both parameters were observed for composite scaffolds doped with CA-coated MPs. The highest saturation magnetization-higher than that published in the literature-was registered for composite PHB scaffolds doped with submicron MPs. All PHB scaffolds proved to be biocompatible, and the ones doped with nanosized MPs yielded faster proliferation of rat mesenchymal stem cells. In addition, all electrospun scaffolds were able to support angiogenesis in vivo at 30 days after implantation in Wistar rats

    Integrable cosmological models with an additional scalar field

    No full text
    We consider modified gravity cosmological models that can be transformed into two-field chiral cosmological models by the conformal metric transformation. For the R2R^2 gravity model with an additional scalar field and the corresponding two-field model with the cosmological constant and nonstandard kinetic part of the action, the general solutions have been obtained in the spatially flat FLRW metric. We analyze the correspondence of the cosmic time solutions obtained and different possible evolutions of the Hubble parameters in the Einstein and Jordan frames

    Poly(3-hydroxybutyrate) 3D-Scaffold–Conduit for Guided Tissue Sprouting

    No full text
    Scaffold biocompatibility remains an urgent problem in tissue engineering. An especially interesting problem is guided cell intergrowth and tissue sprouting using a porous scaffold with a special design. Two types of structures were obtained from poly(3-hydroxybutyrate) (PHB) using a salt leaching technique. In flat scaffolds (scaffold-1), one side was more porous (pore size 100–300 μm), while the other side was smoother (pore size 10–50 μm). Such scaffolds are suitable for the in vitro cultivation of rat mesenchymal stem cells and 3T3 fibroblasts, and, upon subcutaneous implantation to older rats, they cause moderate inflammation and the formation of a fibrous capsule. Scaffold-2s are homogeneous volumetric hard sponges (pore size 30–300 μm) with more structured pores. They were suitable for the in vitro culturing of 3T3 fibroblasts. Scaffold-2s were used to manufacture a conduit from the PHB/PHBV tube with scaffold-2 as a filler. The subcutaneous implantation of such conduits to older rats resulted in gradual soft connective tissue sprouting through the filler material of the scaffold-2 without any visible inflammatory processes. Thus, scaffold-2 can be used as a guide for connective tissue sprouting. The obtained data are advanced studies for reconstructive surgery and tissue engineering application for the elderly patients

    Experimental apparatus to study crystal channeling in an external SPS beamline

    No full text
    For the new generation of high intensity hadronic machines as, for instance, LHC, halo collimation is a necessary issue for the accelerator to operate at the highest possible luminosity and to prevent the damage of superconductor magnets.1 We propose an experiment aimed to a systematic study of channeling phenomenology and of the newly observed \volume re ection" eect. This experiment will be performed in an external SPS beamline and will make use of a primary proton beam with 400 GeV=c momentum and a very small ( 3 rad) divergence. An advantage of the proposed experiment is precise tracking of the particles that interacted with the crystal, so that to determine single-pass eciencies for all the processes involved. For the purpose, a telescope equipped with high-resolution silicon microstrip detectors will be used. New generation silicon crystals and an extra-precise goniometer are mandatory issues. Main goal of the experiment is the achievement of precise information on channeling of relativistic particles and, ultimately, on the feasibility of such technique for halo collimation in the LHC. In this contribution we review the status of the setting-up of the experimental apparatus and its future development in sight of the planned run in September 2006

    Untangling the Metabolic Reprogramming in Brain Cancer: Discovering Key Molecular Players Using Mass Spectrometry

    No full text
    corecore