14 research outputs found

    MPC-based path following design for automated vehicles with rear wheel steering

    No full text
    Many studies have been recently exploited to discuss the path following control algorithms for automated vehicles using various control techniques. However, path following algorithm considering the possibility of automated vehicles with rear wheel steering (RWS) is still less investigated. In this study, we implemented nonlinear model predictive control (NMPC) on a passenger vehicle with active RWS for path following. The controller was compared to two other variations of NMPC where the rear steering angle is proportional to the front or fixed to zero. Simulation results suggested that the proposed controller outperforms the other two variations and the baseline controllers (Stanley and LQR) in terms of accuracy and responsiveness.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Intelligent Vehicle

    Recent Advancements in Continuous Wheel Slip Control

    No full text
    The paper presents an overview of continuous wheel slip control (WSC) methods as the part of anti-lock braking system (ABS) for the several vehicles configurations with friction brakes and electric motors. Performance of proposed WSC design variants using several control techniques has been experimentally evaluated for three different test vehicles: Sport Utility Vehicle (SUV) with decoupled electro-hydraulic brake (DEHB) system, SUV with four individual on-board electric motors (OBM), and compact vehicle with four individual in-wheel motors (IWM). Obtained results demonstrated that proposed continuous WSC variants provide a simultaneous effect on braking efficiency and ride quality as well as robust operation in various road conditions. Presented summary provides outlook on future perspectives of the continuous WSC and compares its status with conventional rule-based ABS systems.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Intelligent Vehicle

    Survey on Wheel Slip Control Design Strategies, Evaluation and Application to Antilock Braking Systems

    Get PDF
    Since their introduction, anti-lock braking systems (ABS) have mostly relied on heuristic, rule-based control strategies. ABS performance, however, can be significantly improved thanks to many recent technological developments. This work presents an extensive review of the state of the art to verify such a statement and quantify the benefits of a new generation of wheel slip control (WSC) systems. Motivated by the state of the art, as a case study, a nonlinear model predictive control (NMPC) design based on a new load-sensing technology was developed. The proposed ABS was tested on Toyota's high-end vehicle simulator and was benchmarked against currently applied industrial controller. Additionally, a comprehensive set of manoeuvres were deployed to assess the performance and robustness of the proposed NMPC design. The analysis showed substantial reduction of the braking distance and better steerability with the proposed approach. Furthermore, the proposed design showed comparable robustness against external factors to the industrial benchmark.Learning & Autonomous ControlIntelligent Vehicle

    Review of Integrated Chassis Control Techniques for Automated Ground Vehicles

    No full text
    Integrated chassis control systems represent a significant advancement in the dynamics of ground vehicles, aimed at enhancing overall performance, comfort, handling, and stability. As vehicles transition from internal combustion to electric platforms, integrated chassis control systems have evolved to meet the demands of electrification and automation. This paper analyses the overall control structure of automated vehicles with integrated chassis control systems. Integration of longitudinal, lateral, and vertical systems presents complexities due to the overlapping control regions of various subsystems. The presented methodology includes a comprehensive examination of state-of-the-art technologies, focusing on algorithms to manage control actions and prevent interference between subsystems. The results underscore the importance of control allocation to exploit the additional degrees of freedom offered by over-actuated systems. This paper systematically overviews the various control methods applied in integrated chassis control and path tracking. This includes a detailed examination of perception and decision-making, parameter estimation techniques, reference generation strategies, and the hierarchy of controllers, encompassing high-level, middle-level, and low-level control components. By offering this systematic overview, this paper aims to facilitate a deeper understanding of the diverse control methods employed in automated driving with integrated chassis control, providing insights into their applications, strengths, and limitations.Intelligent Vehicle

    Femtosecond single-shot imaging and control of a laser-induced first-order phase transition in HoFeO<sub>3</sub>

    No full text
    Excitation of antiferromagnetic HoFeO3 with a single 80 fs laser pulse triggers a first-order spin-reorientation phase transition. In the ultrafast kinetics of the transition one can distinguish the processes of impulsive excitation of spin precession, nucleation of the new domain and growth of the nuclei. The orientation of the spins in the nuclei is defined by the phase of the laser-induced coherent spin precession. The growth of the nuclei is further promoted by heating induced by the laser excitation. Hereby we demonstrate that in HoFeO3 coherent control of the spin precession allows an effective control of the route of the heat-induced first-order magnetic phase transition. The theoretical description of the excitation of the spin precession by linearly-polarized ultrashort laser pulses is developed with the sigma model. The analysis showed high sensitivity of the excited dynamics to the initial spin orientations with respect to the crystallographic axes of the material.QN/Caviglia La

    Torque Vectoring Control on Ice for Electric Vehicles with Individually Actuated Wheels

    No full text
    Recent studies on torque vectoring control for electric vehicles proposed various efficient solutions demonstrating improvement of vehicle stability for evasive manoeuvres. However, the torque vectoring on very low friction surfaces such as black ice or wet snow is rarely investigated, especially for the electric vehicles with off-road capability. The presented study contributes to this topic by laying the groundwork for further advanced torque vectoring designs. Within the framework of this paper, the target vehicle is a sport utility vehicle equipped with four on-board electric motors controlling each wheel separately. The functionality of the developed controllers is tested under hardware-in-the-loop simulations for icy road conditions. For this purpose, the tyre model has been parameterized and validated based on the experimental data conducted on a unique terramechanics test rig at Virginia Polytechnic Institute and State University. The test results confirm very good functionality of the developed controllers and demonstrate an improvement of the electric vehicle driving performance.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Intelligent Vehicle

    Design of the 3D cadastre model and development of the prototype in the Russian Federation

    No full text
    This paper presents the on-going project on 3D cadastre modelling in the Russian Federation. The aim of this project is to provide guidance in the development of a prototype and to create favourable legal and institutional conditions for the introduction of 3D cadastre modelling in the Russian Federation based on experience of the Netherlands and other countries. The project is currently in the phase of the completing the design of a 3D Cadastral model. The first steps of the development of a prototype system have recently be taken.OTB ResearchOTB Research Institute for the Built Environmen

    Shared and distributed X-in-the-loop tests for automotive systems: Feasibility study

    Get PDF
    X-in-The-loop (XIL) technologies are receiving increased attention in modern automotive development processes. In particular, collaborative experiments, such as XIL tools, have efficient applications in the design of multi-Actuated, electric, and automated vehicles. The presented paper introduces results of such a collaborative study for XIL, which focused on the feasibility of coordinated real-Time simulations for the control of vehicle dynamics systems. The outcomes are based on extensive co-simulation tests performed using remote connections among different geographical locations; the connections were between Germany, on one side, and USA, South Africa, and The Netherlands, from the other side. The performed study allowed formulating requirements for further shared and distributed XIL-experiments for functional validation of automotive control systems.Intelligent Vehicle

    Ultrafast laser-induced spin-lattice dynamics in the van der Waals antiferromagnet CoPS<sub>3</sub>

    No full text
    CoPS3 stands out in the family of the van der Waals antiferromagnets XPS3 (X = Mn, Ni, Fe, and Co) due to the unquenched orbital momentum of the magnetic Co2+ ions, which is known to facilitate the coupling of spins to both electromagnetic waves and lattice vibrations. Here, using a time-resolved magneto-optical pump-probe technique, we experimentally study the ultrafast laser-induced dynamics of mutually correlated spins and lattice. It is shown that a femtosecond laser pulse acts as an ultrafast heater and, thus, results in the melting of the antiferromagnetic order. At the same time, the resonant pumping of the 4T1g → 4T2g electronic transition in Co2+ ions effectively changes their orbital momentum, giving rise to a mechanical force that moves the ions in the direction parallel to the orientation of their spins, thus generating a coherent Bg phonon mode at the frequency of about 4.7 THz.QN/Steeneken La
    corecore