7 research outputs found

    Comparative study of nitrogen implantation effect on mechanical and tribological properties of Ti-6Al-4V and Ti-10Zr-10Nb-5Ta alloys

    No full text
    International audienceThe effect of nitrogen implantation on mechanical and tribological properties of Ti-6Al-4V and Ti-10Zr-10Nb-5Ta alloys was studied. Increasing implantation dose from 1 × 1016 N+/cm2 to 2 × 1017 N+/cm2 leads to increase gradually both hardness and Young's modulus. The results show that implantation of 2 × 1017 N+/cm2 allowed to double the value of Young's modulus and to triple the value of hardness. Friction tests that have been conducted against 100Cr6 steel and alumina balls showed that tribological behavior of the two alloys depend on the nature of the counterpart material and is strongly affected by the implanted dose of nitrogen

    Mechanical Alloying Process Applied for Obtaining a New Biodegradable Mg-xZn-Zr-Ca Alloy

    No full text
    The aim of the present paper is to apply the mechanical alloying process to obtain from powder components a new biodegradable Mg-based alloy powder from the system Mg-xZn-Zr-Ca, with high biomechanical and biochemical performance. Various processing parameters for mechanical alloying have been experimented with the ultimate goal to establish an efficient processing route for the production of small biodegradable parts for the medical domain. It has been observed that for the same milling parameters, the composition of the powders has influenced the powder size and shape. On the other hand, for the same composition, the highest experimented milling speed and time conduct to finer powder particles, almost round-shaped, without pores or various inclusions. The most uniform size has been obtained for the powder sample with 10 wt.%Zn. These powders were finally processed by selective laser melting, an additive manufacturing technology, to obtain a homogeneous experimental sample, without cracking, for future more systematical trials

    Microstructure Evolution during Mechanical Alloying of a Biodegradable Magnesium Alloy

    No full text
    The aim of the present work was to apply a mechanical alloying method to obtain a Mg-10Zn-0.5Zr-0.8Ca powder-alloy with morphological and dimensional characteristics, proper for subsequent selective laser melting (SLM) processing. The mechanical alloying process was applied at different values of the milling time. Thus, the evolution of the main morphological and dimensional characteristics of the experimented powder-alloy could be studied. The conclusion of this study is that mechanical alloying possesses good potential to obtain powder-alloy with almost rounded morphology and fine dimensions, proper for further additive manufacturing procedures such as selective laser melting

    Microstructure Evolution during Mechanical Alloying of a Biodegradable Magnesium Alloy

    No full text
    The aim of the present work was to apply a mechanical alloying method to obtain a Mg-10Zn-0.5Zr-0.8Ca powder-alloy with morphological and dimensional characteristics, proper for subsequent selective laser melting (SLM) processing. The mechanical alloying process was applied at different values of the milling time. Thus, the evolution of the main morphological and dimensional characteristics of the experimented powder-alloy could be studied. The conclusion of this study is that mechanical alloying possesses good potential to obtain powder-alloy with almost rounded morphology and fine dimensions, proper for further additive manufacturing procedures such as selective laser melting
    corecore