433 research outputs found

    Integral functions of electron lateral distribution and their fluctuations in electron-photon cascades

    Get PDF
    Monte Carlo simulated lateral distribution functions for electrons of EPC developing in lead, at superhigh energies (.1-1 PeV) for depths t or = 60 c.u. delta t=1t. c.u. are presented. The higher moment characteristics, i.e., variation, asymmetry, excess, are presented along with analytical solutions for the same characteristics at fixed observation level calculated to theory approximations A and B by using numerical inversion of the Laplace transformation. The conclusion is made of a complex, usually non-Gaussian shape of the function of the particle number distribution within a circle of given radius at fixed depth

    Lateral-angular and temporal characteristics of EAS optical radiation

    Get PDF
    Characteristics of the direct and scattered components of electron-photon shower optical radiation for distances R 500 m from the shower core to a detector, allowing for the Cerenkov and fluorescent mechanism of photon generation are presented. The results of calculations are employed to clarify the techniques for determination of the shower parameters detected by both installations registering fluorescent light and those recording Cerenkov light

    Sensitivity of depth of maximum and absorption depth of EAS to hadron production mechanism

    Get PDF
    Comparison of experimental data on depth of extensive air showers (EAS) development maximum in the atmosphere, T sub M and path of absorption, lambda, in the lower atmosphere of EAS with fixed particle number in the energy region eV with the results of calculation show that these parameters are sensitive mainly to the inelastic interaction cross section and scaling violation in the fragmentation and pionization region. The data are explained in a unified manner within the framework of a model in which scaling is violated slightly in the fragmentation region and strongly in the pionization region at primary cosmic rays composition close to the normal one and a permanent increase of inelastic interaction cross section. It is shown that, while interpreting the experimental data, disregard of two methodical points causes a systematic shift in T sub M: (1) shower selection system; and (2) EAS electron lateral distribution when performing the calculations on basis of which the transfer is made from the Cerenkov pulse FWHM to the depth of shower maximum, T sub M

    Color-flavor locked superconductor in a magnetic field

    Full text link
    We study the effects of moderately strong magnetic fields on the properties of color-flavor locked color superconducting quark matter in the framework of the Nambu-Jona-Lasinio model. We find that the energy gaps, which describe the color superconducting pairing as well as the magnetization, are oscillating functions of the magnetic field. Also, we observe that the oscillations of the magnetization can be so strong that homogeneous quark matter becomes metastable for a range of parameters. We suggest that this points to the possibility of magnetic domains or other types of magnetic inhomogeneities in the quark cores of magnetars.Comment: 12 pages, 3 figures. Version accepted for publication in Phys. Rev.

    ONTOLOGICAL AND SOCIO-CULTURAL FOUNDATIONS OF THE INTER-GENERATED DISCOURSE IN THE MODERN INFORMATION SOCIETY

    Get PDF
    Purpose of the study: The article is devoted to understanding the problems of intergenerational discourse and its transformation in ontological and sociocultural reality. The paper substantiates the need to maintain the mechanism of accumulation and reproduction of the experience of ancestors. It is shown that the violation of the transfer of knowledge and traditions leads to the distortion or disappearance of universal cultural codes. Methodology: In this article, cultural, demographic, and psychological approaches are used to study the ontological and sociocultural foundations of intergenerational discourse. It is necessary to show the influence of historical and socio-cultural transformations on the characteristics of interaction between generations, to determine the form of transfer and assimilation of experience within the family, to demonstrate the socially significant consequences of the demographic revolution in the modern information society. Main Findings: Having outlined only a few reasons for the intergenerational discourse in the field of translation of sociocultural experience, it can be noted that their combination forms the layer of human life in which historically determined values and ideals of human society are realized, methods of accumulation and transfer of experience that are unique for each historical era, new methods communications. Applications of this study: Research results can be applied in the course of social psychology (today, young people are literally imposed a radical cultural gap with previous generations), social philosophy, cultural studies (the form of transfer of experience within the family) and even demography (large-scale changes in human society, with the destruction of human social instincts). Novelty/Originality of this study: As the initial task of the study, it is supposed to identify historical and sociocultural changes in the field of translation and appropriation of experience, to conduct a cultural analysis that gives a clear idea of the evolution of the methods of interaction between generations. An interdisciplinary approach involves a wider coverage of existing concepts and shows that the patterns of development of human society cannot be reduced only to biological, economic or socio-cultural patterns

    Gluonic phases, vector condensates, and exotic hadrons in dense QCD

    Get PDF
    We study the dynamics in phases with vector condensates of gluons (gluonic phases) in dense two-flavor quark matter. These phases yield an example of dynamics in which the Higgs mechanism is provided by condensates of gauge (or gauge plus scalar) fields. Because vacuum expectation values of spatial components of vector fields break the rotational symmetry, it is naturally to have a spontaneous breakdown both of external and internal symmetries in this case. In particular, by using the Ginzburg-Landau approach, we establish the existence of a gluonic phase with both the rotational symmetry and the electromagnetic U(1) being spontaneously broken. In other words, this phase describes an anisotropic medium in which the color and electric superconductivities coexist. It is shown that this phase corresponds to a minimum of the Ginzburg-Landau potential and, unlike the two-flavor superconducting (2SC) phase, it does not suffer from the chromomagnetic instability. The dual (confinement) description of its dynamics is developed and it is shown that there are light exotic vector hadrons in the spectrum, some of which condense. Because most of the initial symmetries in this system are spontaneously broken, its dynamics is very rich.Comment: 33 pages, RevTeX; v.2: Published PRD versio

    Common vacuum conservation amplitude in the theory of the radiation of mirrors in two-dimensional space-time and of charges in four-dimensional space-time

    Get PDF
    The action changes (and thus the vacuum conservation amplitudes) in the proper-time representation are found for an accelerated mirror interacting with scalar and spinor vacuum fields in 1+1 space. They are shown to coincide to within the multiplier e^2 with the action changes of electric and scalar charges accelerated in 3+1 space. This coincidence is attributed to the fact that the Bose and Fermi pairs emitted by a mirror have the same spins 1 and 0 as do the photons and scalar quanta emitted by charges. It is shown that the propagation of virtual pairs in 1+1 space can be described by the causal Green's function \Delta_f(z,\mu) of the wave equation for 3+1 space. This is because the pairs can have any positive mass and their propagation function is represented by an integral of the causal propagation function of a massive particle in 1+1 space over mass which coincides with \Delta_f(z,\mu). In this integral the lower limit \mu is chosen small, but nonzero, to eliminate the infrared divergence. It is shown that the real and imaginary parts of the action change are related by dispersion relations, in which a mass parameter serves as the dispersion variable. They are a consequence of the same relations for \Delta_f(z,\mu). Therefore, the appearance of the real part of the action change is a direct consequence of the causality, according to which real part of \Delta_f(z,\mu) is nonzero only for timelike and zero intervals.Comment: 23 pages, Latex, revte

    Results of investigation of muon fluxes of superhigh energy cosmic rays with X-ray emulsion chambers

    Get PDF
    The overall data from the investigation of the cosmic ray muon flux in the range of zenith angles (0-90) deg within the energy range (3.5 to 5.0) TeV is presented. The exposure of large X-ray emulsion chambers underground was 1200 tons. year. The data were processe using the method which was applied in the experiment Pamir and differred from the earlier applied one. The obtained value of a slope power index of the differential energy spectrum of the global muon flux is =3.7 that corresponds to the slope of the pion generation differential spectrum, gamma sub PI = 2.75 + or - .04. The analysis of the muon zenith-angular distribution showed that the contribution of rapid generation muons in the total muon flux agree the best with the value .2% and less with .7% at a 90% reliability level
    corecore