20 research outputs found

    Genetic secrets of long-term glioblastoma survivors

    Get PDF
    Glioblastomas account for the majority of primary brain tumors. Although glioblastomas are considered as rare diseases, they represent 60%-70% of all gliomas and in most cases have fatal consequences. Genetic analyses show great heterogeneity both intratumor and intertumor. This notion opens up debates about glioblastoma origin. Different brain cells including astrocytes, neural stem cells, oligodendrocyte precursor cells and glioblastoma stem cells are proposed as capable of initiation and reseeding a tumor; however data is still inconclusive. Due to high mortality rate, long term glioblastoma survivors are defined as patients who live longer than 2 years post diagnosis. Extreme survivors, living 10 years or more after diagnosis, comprise less than 1% of all patients. Molecular testing suggests differences in the genetic profiles of glioblastoma between short and long term survivors. The most informative indicators are IDH mutations and MGMT promotor methylation. Other genes like FBLN4, EMP3, IGFBP-2, IGFBP-3, LGALS3, MAOB, PDPN, SERPING1 and TIMP1 have also been associated with glioblastoma prolonged survival. Emerging evidence proposes roles of different microRNAs in predicting patient survival. Moreover, clinical features like seizures as a symptom at presentation, age at diagnosis, and the extent of the surgical resection are also factors that influence the length of survival. Because of the small number of long term survivors, it is difficult to examine these samples and draw conclusions about the genetics of glioblastoma longevity. To aid in the clinical care, a thorough “omics” approach is necessary for identifying differences between short and long term glioblastoma survivors

    High FREM2 Gene and Protein Expression Are Associated with Favorable Prognosis of IDH-WT Glioblastomas

    No full text
    World Health Organization grade IV diffuse gliomas, known as glioblastomas, are the most common malignant brain tumors, and they show poor prognosis. Multimodal treatment of surgery followed by radiation and chemotherapy is not sufficient to increase patient survival, which is 12 to 18 months after diagnosis. Despite extensive research, patient life expectancy has not significantly improved over the last decade. Previously, we identified FREM2 and SPRY1 as genes with differential expression in glioblastoma cell lines compared to nonmalignant astrocytes. In addition, the FREM2 and SPRY1 proteins show specific localization on the surface of glioblastoma cells. In this study, we explored the roles of the FREM2 and SPRY1 genes and their proteins in glioblastoma pathology using human tissue samples. We used proteomic, transcriptomic, and bioinformatics approaches to detect changes at different molecular levels. We demonstrate increased FREM2 protein expression levels in glioblastomas compared to reference samples. At the transcriptomic level, both FREM2 and SPRY1 show increased expression in tissue samples of different glioma grades compared to nonmalignant brain tissue. To broaden our experimental findings, we analyzed The Cancer Genome Atlas glioblastoma patient datasets. We discovered higher FREM2 and SPRY1 gene expression levels in glioblastomas compared to lower grade gliomas and reference samples. In addition, we observed that low FREM2 expression was associated with progression of IDH-mutant low-grade glioma patients. Multivariate analysis showed positive association between FREM2 and favorable prognosis of IDH-wild type glioblastoma. We conclude that FREM2 has an important role in malignant progression of glioblastoma, and we suggest deeper analysis to determine its involvement in glioblastoma pathology

    Non-animal glioblastoma models for personalized treatment

    No full text
    Glioblastoma is an extremely lethal cancer characterized by great heterogeneity at different molecular and cellular levels. As a result, treatment options have moved far from systemic and universal therapies toward targeted treatments and personalized medicine. However, for successful translation from preclinical studies to clinical trials, experiments must be performed on reliable disease models. Numerous experimental models have been developed for glioblastoma, ranging from simple 2D cell cultures to study the nature of the disease to complex 3D models such as neurospheres, organoids, tissue-slice cultures, bioprinted models, and tumor on chip, as perfect prototypes to evaluate the therapeutic potential of different drugs. The presence of multiple research models is consistent with the complexity and molecular diversity of glioblastoma. The advantage of such models is the recapitulation of the tumor environment, and in some cases the preservation of immune system components as well as the creation of simple vessels. There are also two case studies translating in vitro studies on glioblastoma organoids to patients as well as four ongoing clinical trials using glioblastoma models, indicating high clinical potential of glioblastoma models

    Nanotechnology Meets Oncology: Nanomaterials in Brain Cancer Research, Diagnosis and Therapy

    No full text
    Advances in technology of the past decades led to development of new nanometer scale diagnosis and treatment approaches in cancer medicine leading to establishment of nanooncology. Inorganic and organic nanomaterials have been shown to improve bioimaging techniques and targeted drug delivery systems. Their favorable physico-chemical characteristics, like small sizes, large surface area compared to volume, specific structural characteristics, and possibility to attach different molecules on their surface transform them into excellent transport vehicles able to cross cell and/or tissue barriers, including the blood–brain barrier. The latter is one of the greatest challenges in diagnosis and treatment of brain cancers. Application of nanomaterials can prolong the circulation time of the drugs and contrasting agents in the brain, posing an excellent opportunity for advancing the treatment of the most aggressive form of the brain cancer—glioblastomas. However, possible unwanted side-effects and toxicity issues must be considered before final clinical translation of nanoparticles

    Sonication is a suitable method for loading nanobody into glioblastoma small extracellular vesicles

    No full text
    Glioblastoma is one of the deadliest cancers, therefore novel efficient therapeutic approaches are urgently required. One of such are nanobodies, prospective nano-sized bio-drugs with advantageous characteristics. Nanobodies can target intracellular proteins, but to increase their efficiency, the delivery system should be applied. Here, we examined small extracellular vesicles as a delivery system for anti-vimentin nanobody Nb79. Nb79 was loaded in small extracellular vesicles either by incubation with glioblastoma cells, by passive loading into isolated small extracellular vesicles or by sonication of isolated small extracellular vesicles. Small extracellular vesicles secreted by glioblastoma cells were isolated by ultracentrifugation on sucrose cushion. The size distribution and average size of sonicated and non-sonicated small extracellular vesicles were determined by nanoparticle tracking analysis method. The loading of Nb79 into small extracellular vesicles by incubation with cells, passive loading or sonication was confirmed by Western blot and electron microscopy. The effect of small extracellular vesicles on cell survival was determined by WST-1 reagent. Loading of small extracellular vesicles by incubation of cells with Nb79 was unsuccessful and resulted in substantial cell death. On the other hand, as confirmed by Western blot and electron microscopy, sonication is a successful method for obtaining Nb79-loaded small extracellular vesicles. Small extracellular vesicles also had an effect on cell viability. Small extracellular vesicles without Nb79 increased survival of U251 and NCH644 cells for 20–25%, while the Nb79-loaded small extracellular vesicles decreased survival of NCH421k by 11%. We demonstrated that sonication is a suitable method to load nanobodies into exosome, and these small extracellular vesicles could in turn reduce cell survival. The method could be translated also to other applications, such as targeted delivery system of other protein-based drugs

    Nanobodies targeting ABCC3 for immunotargeted applications in glioblastoma

    No full text
    Abstract The cancer “omics” reveal many clinically relevant alterations that are transforming the molecular characterization of glioblastomas. However, many of these findings are not yet translated into clinical practice due, in part, to the lack of non-invasive biomarkers and the limitations imposed by the blood–brain barrier. Nanobodies, camelid single-domain antibody fragments, emerge as a promising tool for immunotargeted applications for diagnosing and treating glioblastomas. Performing agnostic bioinformatic analysis from glioblastoma patient datasets, we identified ATP Binding Cassette subfamily C member 3 (ABCC3) as a suitable target for immunotargeted applications. The expression of ABCC3 is associated with poor survival and impaired response to temozolomide. Importantly, high expression of ABCC3 is restricted to glioblastoma, with negligible levels in healthy brain tissue, and further correlates with tumor grade and stemness markers. We identified three immunogenic epitopes of ABCC3 which were used to isolate nanobodies from a glioblastoma-specific phage-display nanobody library. Two nanobodies targeting ABCC3 (NbA42 and NbA213) were further characterized and demonstrated in vivo selective recognition of ABCC3 in glioblastoma xenograft mouse models upon systemic administration. We designate NbA42 and NbA213 as new candidates to implement immunotargeted applications guiding a more personalized and precise diagnosis, monitoring, and treatment of glioblastoma patients
    corecore