8 research outputs found

    Progress and applications of (Cu–)Ag–Bi–I semiconductors, and their derivatives, as next-generation lead-free materials for photovoltaics, detectors and memristors

    Get PDF
    The search for efficient but inexpensive photovoltaics over the past decade has been disrupted by the advent of lead-halide perovskite solar cells. Despite impressive rises in performance, the toxicity and stability concerns of these materials have prompted a broad, interdisciplinary community across the world to search for lead-free and stable alternatives. A set of such materials that have recently gained attention are semiconductors in the CuI–AgI–BiI3 phase space and their derivatives. These materials include ternary silver bismuth iodide compounds (AgaBibIa+3b), ternary copper bismuth iodide Cu–Bi–I compounds and quaternary Cu–Ag–Bi–I materials, as well as analogues with Sb substituted into the Bi site and Br into the I site. These compounds are comprised of a cubic close-packed sub-lattice of I, with Ag and Bi occupying octahedral holes, while Cu occupies tetrahedral holes. The octahedral motifs adopted by these compounds are either spinel, CdCl2-type, or NaVO2-type. NaVO2-type AgaBibIa+3b compounds are also known as rudorffites. Many of these compounds have thus far demonstrated improved stability and reduced toxicity compared to halide perovskites, along with stable bandgaps in the 1.6–1.9 eV range, making them highly promising for energy harvesting and detection applications. This review begins by discussing the progress in the development of these semiconductors over the past few years, focusing on their optoelectronic properties and process–property–structure relationships. Next, we discuss the progress in developing Ag–Bi–I and Cu–Bi–I compounds for solar cells, indoor photovoltaics, photodetectors, radiation detectors and memristors. We conclude with a discussion of the critical fundamental questions that need to be addressed to push this area forward, and how the learnings from the wider metal-halide semiconductor field can inform future directions

    Photoelectric Properties of Silicon Nanocrystals/P3HT Bulk-Heterojunction Ordered in Titanium Dioxide Nanotube Arrays

    Get PDF
    A silicon nanocrystals (Si-ncs) conjugated-polymer-based bulk-heterojunction represents a promising approach for low-cost hybrid solar cells. In this contribution, the bulk-heterojunction is based on Si-ncs prepared by electrochemical etching and poly(3-hexylthiophene) (P3HT) polymer. Photoelectric properties in parallel and vertical device-like configuration were investigated. Electronic interaction between the polymer and surfactant-free Si-ncs is achieved. Temperature-dependent photoluminescence and transport properties were studied and the ratio between the photo- and dark-conductivity of 1.7 was achieved at ambient conditions. Furthermore the porous titanium dioxide (TiO2) nanotubes’ template was used for vertical order of photosensitive Si-ncs/P3HT-based blend. The anodization of titanium foil in ethylene glycol-based electrolyte containing fluoride ions and subsequent thermal annealing were used to prepare anatase TiO2nanotube arrays. The arrays with nanotube inner diameter of 90 and 50 nm were used for vertical ordering of the Si-ncs/P3HT bulk-heterojunction

    Pure and deep-level doped semi-insulating CdTe

    No full text
    Experimental conditions for a growth of near stoichiometric high resistive CdTe single crystals with a minimized concentration of point defects have to be defined. The position of the stoichiometric line in the pressure-temperature (P-T) phase diagram was evaluated from high-temperature in situ galvanomagntic measurements. Calculations based on a model of two major native defects (Cd vacancy and Cd interstitial) show, that a very small variation of Cd pressure P-Cd results in a strong generation of uncompensated native defects. Modelling of room temperature carrier density in dependence of the deep defect density N-DD, P-Cd, and annealing temperature T shows, that the range of optimal P-Cd, at which the high resistivity can be reached, broadens with increasing N-DD or decreasing T. It is shown, that at low T < 450degreesC the deep defect density < 10(15) cm(-3) is sufficient to grow the high resistive CdTe. CdTe doped with Vanadium is used as a model example

    Molecular and Supramolecular Structures of Triiodides and Polyiodobismuthates of Phenylenediammonium and Its N,N-dimethyl Derivative

    Get PDF
    Despite remarkable progress in photoconversion efficiency, the toxicity of lead-based hybrid perovskites remains an important issue hindering their applications in consumer optoelectronic devices, such as solar cells, LED displays, and photodetectors. For that reason, lead-free metal halide complexes have attracted great attention as alternative optoelectronic materials. In this work, we demonstrate that reactions of two aromatic diamines with iodine in hydroiodic acid produced phenylenediammonium (PDA) and N,N-dimethyl-phenylenediammonium (DMPDA) triiodides, PDA(I3)2⋅2H2O and DMPDA(I3)I, respectively. If the source of bismuth was added, they were converted into previously reported PDA(BiI4)2⋅I2 and new (DMPDA)2(BiI6)(I3)⋅2H2O, having band gaps of 1.45 and 1.7 eV, respectively, which are in the optimal range for efficient solar light absorbers. All four compounds presented organic–inorganic hybrids, whose supramolecular structures were based on a variety of intermolecular forces, including (N)H⋅⋅⋅I and (N)H⋅⋅⋅O hydrogen bonds as well as I⋅⋅⋅I secondary and weak interactions. Details of their molecular and supramolecular structures are discussed based on single-crystal X-ray diffraction data, thermal analysis, and Raman and optical spectroscop

    Pure and deep-level doped semi-insulating CdTe

    No full text
    Experimental conditions for a growth of near stoichiometric high resistive CdTe single crystals with a minimized concentration of point defects have to be defined. The position of the stoichiometric line in the pressure-temperature (P-T) phase diagram was evaluated from high-temperature in situ galvanomagntic measurements. Calculations based on a model of two major native defects (Cd vacancy and Cd interstitial) show, that a very small variation of Cd pressure P-Cd results in a strong generation of uncompensated native defects. Modelling of room temperature carrier density in dependence of the deep defect density N-DD, P-Cd, and annealing temperature T shows, that the range of optimal P-Cd, at which the high resistivity can be reached, broadens with increasing N-DD or decreasing T. It is shown, that at low T < 450degreesC the deep defect density < 10(15) cm(-3) is sufficient to grow the high resistive CdTe. CdTe doped with Vanadium is used as a model example.</p

    Strategic advantages of reactive polyiodide melts for scalable perovskite photovoltaics

    No full text
    Despite tremendous progress in efficiency and stability, perovskite solar cells are still facing the challenge of upscaling. Here we present unique advantages of reactive polyiodide melts for solvent- and adduct-free reactionary fabrication of perovskite films exhibiting excellent quality over large areas. Our method employs a nanoscale layer of metallic Pb coated with stoichiometric amounts of CH3NH3I (MAI) or mixed CsI/MAI/NH2CHNH2I (FAI), subsequently exposed to iodine vapour. The instantly formed MAI(3(L)) or Cs(MA,FA)I-3(L) polyiodide liquid converts the Pb layer into a pure perovskite film without byproducts or unreacted components at nearly room temperature. We demonstrate highly uniform and relatively large area MAPbI(3) perovskite films, such as 100 cm(2) on glass/fluorine-doped tin oxide (FTO) and 600 cm(2) on flexible polyethylene terephthalate (PET)/indium tin oxide (ITO) substrates. As a proof-of-concept, we demonstrate solar cells with reverse scan power conversion efficiencies of 16.12% (planar MAPbI(3)), 17.18% (mesoscopic MAPbI(3)) and 16.89% (planar Cs(0.05)MA(0.2)FA(0.75)PbI(3)) in the standard FTO/c(m)-TiO2/perovskite/spiro-OMeTAD/Au architecture
    corecore