2 research outputs found

    Numerical Simulation and Self-Similarity of the Mean Mass Transfer in Turbulent Round Jets

    No full text
    The paper investigates the mean mass transfer/passive scalar spreading in turbulent submerged round jets. Two regions of flow are present in the jet evolution: the Near-Field Region (NFR) and the Fully Developed Region (FDR). This group of research investigates from some years the mean evolution of turbulent rectangular jets with the new physical finding that two sub-regions (not a single one) are present in the NFR. The first region of the two is the newly discovered Undisturbed Region of Flow (URF), while the second one is the known Potential Core Region (PCR). In a recent paper we showed that the flow evolution of turbulent round jets, as far as momentum spreading is concerned, is self-similar also in the NFR. Literature shows that mass transfer spreading is self-similar only in FDR. The present paper presents new mean mass transfer results of the numerical Large Eddy Simulation (LES) in turbulent round jets. Four Reynolds numbers, from 2492 to 19,988, and two laminar Schmidt numbers, 1 and 10, are investigated. The first novel result of this paper is that mass transfer is self-similar in the NFR. The second result is that two new analytical models describe the passive scalar spreading in the URF and PCR. The third result is that two new self-similar laws describe the passive scalar spreading in the FDR. The fourth result states that the well-known power-law relationship, between passive scalar and axial momentum in the FDR, holds regardless of the modeling of turbulent viscosity and turbulent Schmidt number

    Further results on the mean mass transfer and fluid flow in a turbulent round jet

    No full text
    The present paper reports new numerical results of the mean mass transfer in a turbulent submerged round jet. A series of Large Eddy Simulations (LES) are presented at four Reynolds (Re) numbers (Re = 2492, Re = 4491, Re = 9994, Re = 19,988) and laminar Schmidt (Sc) number equal to Sc = 10. The numerical results are specially focused on their patterns in the Undisturbed Region of Flow (URF), Potential Core Region (PCR) and Fully Developed Region (FDR). The present results are compared with the previous literature concerning a two-dimensional and a three-dimensional jet, issuing from an infinitely wide slot, with the conclusion that the turbulence moments decay faster in a round jet configuration.</p
    corecore