4 research outputs found

    Predicting autosomal dominant polycystic kidney disease progression: review of promising Serum and urine biomarkers

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) is one of the leading causes of end-stage renal disease. In spite of the recent tremendous progress in the understanding of ADPKD pathogenesis, the molecular mechanisms of the disease remain incompletely understood. Considering emerging new targeted therapies for ADPKD, it has become crucial to disclose easily measurable and widely available biomarkers for identifying patients with future rapid disease progression. This review encompasses all the research with a shared goal of identifying promising serum or urine biomarkers for predicting ADPKD progression or response to therapy. The rate of the ADPKD progress varies significantly between patients. The phenotypic variability is only partly explained by the underlying genetic lesion diversity. Considering significant decline in kidney function in ADPKD is not usually evident until at least 50% of the parenchyma has been destroyed, conventional kidney function measures, such as glomerular filtration rate (GFR), are not suitable for monitoring disease progression in ADPKD, particularly in its early stages. Since polycystic kidney enlargement usually precedes the decline in GFR, height-adjusted total kidney volume (ht-TKV) has been accepted as an early biomarker for assessing disease severity in ADPKD patients. However, since measuring ht-TKV is time-consuming and observer-dependent, the identification of a sensitive and quickly measurable biomarker is of a great interest for everyday clinical practice. Throughout the last decade, due to development of proteomic and metabolomic techniques and the enlightenment of multiple molecular pathways involved in the ADPKD pathogenesis, a number of urine and serum protein biomarkers have been investigated in ADPKD patients, some of which seem worth of further exploring. These include copeptin, angiotensinogen, monocyte chemoattractant protein 1, kidney injury molecule-1 and urine-to-plasma urea ratio among many others. The aim of the current review is to provide an overview of all of the published evidence on potentially clinically valuable serum and urine biomarkers that could be used for predicting disease progression or response to therapy in patients with ADPKD. Hopefully, this review will encourage future longitudinal prospective clinical studies evaluating proposed biomarkers as prognostic tools to improve management and outcome of ADPKD patients in everyday clinical practice

    A Systematic Review of the (Un)known Host Immune Response Biomarkers for Predicting Recurrence of Urinary Tract Infection

    No full text
    Recurrent urinary tract infections (rUTI) represent a major healthcare and economic burden along with a significant impact on patient's morbidity and quality of life, even in the absence of well-known risk factors, such as vesicoureteral reflux. Despite numerous attempts to find a suitable therapeutic option, there is no clear benefit of any currently available intervention for prevention of UTI recurrence and its long-term consequences such as hypertension, renal scarring and/or insufficiency. The common treatment practice in many centers around the globe involves the use of continuous low-dose antibiotic prophylaxis, irrespective of various studies indicating increased microbial resistance against the prophylactic drug, leading to prolonged duration and escalating the cost of UTI treatment. Moreover, the rapid appearance of multi-drug resistant uropathogens is threatening to transform UTI to untreatable disease, while impaired host-microbiota homeostasis induced by a long-term use of antibiotics predisposes patients for various autoimmune and infectious diseases. New biomarkers of the increased risk of UTI recurrence could therefore assist in avoiding such outcomes by revealing more specific patient population which could benefit from additional interventions. In this light, the recent findings suggesting a crucial role of urothelial innate immunity mechanisms in protection of urinary tract from invading uropathogens might offer new diagnostic, prognostic and even therapeutic opportunities. Uroepithelial cells detect uropathogens via pattern recognition receptors, resulting in activation of intracellular signaling cascade and transcription factors, which ultimately leads to an increased production and secretion of chemokines, cytokines and antimicrobial peptides into the urinary stream. Emerging evidence suggest that the disturbance of a single component of the urinary tract innate immunity system might increase susceptibility for rUTI. The aim of the current review is to update clinicians and researchers on potential biomarkers of host immune response alterations predisposing for rUTI and propose those well worth exploring further. For this purpose, over a hundred original papers were identified through an extensive PubMed and Scopus databases search. This comprehensive review might enrich the current clinical practice and fill the unmet clinical needs, but also encourage the development of therapeutic agents that would facilitate urinary bacterial clearance by enhancing the host immune response

    Case Report: Simultaneously Developed Amyopathic Dermatomyositis and Autoimmune Sclerosing Cholangitis – a Coincidence or a Shared Immunopathogenesis?

    No full text
    Inflammatory rheumatic diseases (IRD) and autoimmune liver diseases (AILD) share many similarities regarding epidemiology, genetics, immunology and therapeutic regimens, so it is not surprising that approximately 20% of patients with AILD are diagnosed with an IRD as well. Clinical features and biochemical hallmarks of IRD and AILD often intertwine and cross diagnostic criteria. Therefore, the real distinction of underlying disorders in a patient with these comorbidities may be challenging. The present report is the first report of simultaneously developed juvenile dermatomyositis (JDM) and autoimmune sclerosing cholangitis (ASC) with both entities fulfilling the latest guidelines for a definite diagnosis. Both of these diagnoses are difficult to definitely establish since ASC has a similar serologic profile as autoimmune hepatitis and liver histological analysis is frequently non-specific, whereas clinically amyopathic JDM diagnosis depends mostly on classical dermatological symptoms, while the rest of the diagnostic criteria, including the necessity for skin or muscle biopsy and the presence of myositis specific antibodies, are still not uniformed. In spite of these challenges, our patient clearly met European League Against Rheumatism/American College of Rheumatology classification criteria for CAJDM and The European Society for Pediatric Gastroenterology, Hepatology and Nutrition diagnostic criteria for ASC. Since elevated serum transaminases, the presence of serum antinuclear antibodies and hypergammaglobulinemia could be explained as a part of both JDM and ASC, the underlying pathophysiology remains debatable. Intriguingly, JDM and ASC share genetic predisposition including human leukocyte antigen allele DRB1*0301 and tumor necrosis factor α 308A allele. Furthermore, both humoral and cellular components of the adaptive immune system contribute to the pathogenesis of JDM and ASC. Moreover, recent findings indicate that the loss of the CD28 expression on T-cells plays a significant role in their pathogenesis along with the Th17 immune pathway. Despite these common features that suggest shared autoimmunity, AILD and autoimmune myositis are traditionally studied and managed independently. The lack of therapies that target the underlying cause results in a high rate of adverse events due to unspecific immunosuppressive therapy. Shared autoimmunity is an ideal area to develop new, targeted immunotherapy that would hopefully be beneficial for more than one disease

    Predicting autosomal dominant polycystic kidney disease progression: review of promising Serum and urine biomarkers

    No full text
    Autosomal dominant polycystic kidney disease (ADPKD) is one of the leading causes of end-stage renal disease. In spite of the recent tremendous progress in the understanding of ADPKD pathogenesis, the molecular mechanisms of the disease remain incompletely understood. Considering emerging new targeted therapies for ADPKD, it has become crucial to disclose easily measurable and widely available biomarkers for identifying patients with future rapid disease progression. This review encompasses all the research with a shared goal of identifying promising serum or urine biomarkers for predicting ADPKD progression or response to therapy. The rate of the ADPKD progress varies significantly between patients. The phenotypic variability is only partly explained by the underlying genetic lesion diversity. Considering significant decline in kidney function in ADPKD is not usually evident until at least 50% of the parenchyma has been destroyed, conventional kidney function measures, such as glomerular filtration rate (GFR), are not suitable for monitoring disease progression in ADPKD, particularly in its early stages. Since polycystic kidney enlargement usually precedes the decline in GFR, height-adjusted total kidney volume (ht-TKV) has been accepted as an early biomarker for assessing disease severity in ADPKD patients. However, since measuring ht-TKV is time-consuming and observer-dependent, the identification of a sensitive and quickly measurable biomarker is of a great interest for everyday clinical practice. Throughout the last decade, due to development of proteomic and metabolomic techniques and the enlightenment of multiple molecular pathways involved in the ADPKD pathogenesis, a number of urine and serum protein biomarkers have been investigated in ADPKD patients, some of which seem worth of further exploring. These include copeptin, angiotensinogen, monocyte chemoattractant protein 1, kidney injury molecule-1 and urine-to-plasma urea ratio among many others. The aim of the current review is to provide an overview of all of the published evidence on potentially clinically valuable serum and urine biomarkers that could be used for predicting disease progression or response to therapy in patients with ADPKD. Hopefully, this review will encourage future longitudinal prospective clinical studies evaluating proposed biomarkers as prognostic tools to improve management and outcome of ADPKD patients in everyday clinical practice
    corecore