17 research outputs found

    Effect of Bone Morphogenetic Protein-7 on Gene Expression of Bone Morphogenetic Protein-4, Dentin Matrix Protein-1, Insulin-like Growth Factor-I and -II in Cementoblasts In Vitro

    Get PDF
    Formation of root cementum is a crucial moment in the development of the periodontium. Cells that produce the cementum are named cementoblasts and they posses some unique characteristics, which differentiates them from osteoblasts. Bone morphogenetic proteins (BMPs) are crucial regulators of both bone and tooth formation. In animal studies BMPs have shown to induce periodontal regeneration, however the molecular mechanism as how BMP-7 induces cementogenesis is largely unknown. We have investigated how BMP-7 regulates gene expression of BMP-4, Dentin matrix protein- 1 (DMP-1), Insulin-like growth factor-I (IGF-I) and –II (IGF-II) in cementoblasts. BMP-7 induced proliferation, and mineralized nodule formation of cementoblasts. Our results show that gene expression was influenced by the BMP-7 concentration used, with 75 ng/mL generally down regulating gene expression at 6 hours and then up-regulating after 24 hours. The 300 ng/mL concentration had an opposite effect while the 150 ng/mL concentration generally up-regulated gene expression after 6 hours and then after 24 hours maintained this up-regulation or had no effect compared to control, depending on the examined gene. The results show that BMP-7 down-regulated BMP-4 expression in cementoblasts but still up-regulated DMP-1 gene expression suggesting that BMP-7 can, in a paracrine manner, functionally substitute for BMP-4. Furthermore, it seems that BMP-7 exerts its effect more through the IGF-II than the IGF-I pathway as shown by an up-regulation of IGF-II and down-regulation of IGF-I. These results suggest that a combination of BMP-7/IGF-II could have a potential therapeutical significance in inducing cementogenesis and periodontal regeneration

    Effect of Bone Morphogenetic Protein-7 on Gene Expression of Bone Morphogenetic Protein-4, Dentin Matrix Protein-1, Insulin-like Growth Factor-I and -II in Cementoblasts In Vitro

    Get PDF
    Formation of root cementum is a crucial moment in the development of the periodontium. Cells that produce the cementum are named cementoblasts and they posses some unique characteristics, which differentiates them from osteoblasts. Bone morphogenetic proteins (BMPs) are crucial regulators of both bone and tooth formation. In animal studies BMPs have shown to induce periodontal regeneration, however the molecular mechanism as how BMP-7 induces cementogenesis is largely unknown. We have investigated how BMP-7 regulates gene expression of BMP-4, Dentin matrix protein- 1 (DMP-1), Insulin-like growth factor-I (IGF-I) and –II (IGF-II) in cementoblasts. BMP-7 induced proliferation, and mineralized nodule formation of cementoblasts. Our results show that gene expression was influenced by the BMP-7 concentration used, with 75 ng/mL generally down regulating gene expression at 6 hours and then up-regulating after 24 hours. The 300 ng/mL concentration had an opposite effect while the 150 ng/mL concentration generally up-regulated gene expression after 6 hours and then after 24 hours maintained this up-regulation or had no effect compared to control, depending on the examined gene. The results show that BMP-7 down-regulated BMP-4 expression in cementoblasts but still up-regulated DMP-1 gene expression suggesting that BMP-7 can, in a paracrine manner, functionally substitute for BMP-4. Furthermore, it seems that BMP-7 exerts its effect more through the IGF-II than the IGF-I pathway as shown by an up-regulation of IGF-II and down-regulation of IGF-I. These results suggest that a combination of BMP-7/IGF-II could have a potential therapeutical significance in inducing cementogenesis and periodontal regeneration

    Induction of NTPDase1/CD39 by Reactive Microglia and Macrophages Is Associated With the Functional State During EAE

    Get PDF
    Purinergic signaling is critically involved in neuroinflammation associated with multiple sclerosis (MS) and its major inflammatory animal model, experimental autoimmune encephalomyelitis (EAE). Herein, we explored the expression of ectonucleoside triphosphate diphosphohydrolase1 (NTPDase1/CD39) in the spinal cord, at the onset (Eo), peak (Ep), and end (Ee) of EAE. Several-fold increase in mRNA and in NTPDase1 protein levels were observed at Eo and Ep. In situ hybridization combined with fluorescent immunohistochemistry showed that reactive microglia and infiltrated mononuclear cells mostly accounted for the observed increase. Colocalization analysis revealed that up to 80% of Iba1 immunoreactivity and ∼50% of CD68 immunoreactivity was colocalized with NTPDase1, while flow cytometric analysis revealed that ∼70% of mononuclear infiltrates were NTPDase1+ at Ep. Given the main role of NTPDase1 to degrade proinflammatory ATP, we hypothesized that the observed up-regulation of NTPDase1 may be associated with the transition between proinflammatory M1-like to neuroprotective M2-like phenotype of microglia/macrophages during EAE. Functional phenotype of reactive microglia/macrophages that overexpress NTPDase1 was assessed by multi-image colocalization analysis using iNOS and Arg1 as selective markers for M1 and M2 reactive states, respectively. At the peak of EAE NTPDase1 immunoreactivity showed much higher co-occurrence with Arg1 immunoreactivity in microglia and macrophages, compared to iNOS, implying its stronger association with M2-like reactive phenotype. Additionally, in ∼80% of CD68 positive cells NTPDase1 was coexpressed with Arg1 compared to negligible fraction coexpresing iNOS and ∼15% coexpresing both markers, additionally indicating prevalent association of NTPDase1 with M2-like microglial/macrophages phenotype at Ep. Together, our data suggest an association between NTPDase1 up-regulation by reactive microglia and infiltrated macrophages and their transition toward antiinflammatory phenotype in EAE

    Astrocyte phenotypes: Emphasis on potential markers in neuroinflammation

    No full text
    Astrocytes, the most abundant glial cells in the central nervous system (CNS), have numerous integral roles in all CNS functions. They are essential for synaptic transmission and support neurons by providing metabolic substrates, secreting growth factors and regulating extracellular concentrations of ions and neurotransmitters. Astrocytes respond to CNS insults through reactive astrogliosis, in which they go through many functional and molecular changes. In neuroinflammatory conditions reactive astrocytes exert both beneficial and detrimental functions, depending on the context and heterogeneity of astrocytic populations. In this review we profile astrocytic diversity in the context of neuroinflammation; with a specific focus on multiple sclerosis (MS) and its best-described animal model experimental autoimmune encephalomyelitis (EAE). We characterize two main subtypes, protoplasmic and fibrous astrocytes and describe the role of intermediate filaments in the physiology and pathology of these cells. Additionally, we outline a variety of markers that are emerging as important in investigating astrocytic biology in both physiological conditions and neuroinflammation

    Down-regulation of NTPDase2 and ADP-sensitive P2 Purinoceptors Correlate with Severity of Symptoms during Experimental Autoimmune Encephalomyelitis

    No full text
    The present study explores tissue and cellular distribution of ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2) and the gene and protein expression in rat spinal cord during the course of experimental autoimmune encephalomyelitis (EAE). Given that NTPDase2 hydrolyzes ATP with a transient accumulation of ADP, the expression of ADP-sensitive P2 purinoceptors was analyzed as well. The autoimmune disease was actively induced in Dark Agouti female rats and the changes were analyzed 10, 15 and 29 days after the induction. These selected time points correspond to the onset (Eo), peak (Ep) and recovery (Er) from EAE. In control animals, NTPDase2 was confined in the white matter, in most of the glial fibrillary acidic protein (GFAP)-immunoreactive (ir) astrocytes and in a considerable number of nestin-ir cells, while the other cell types were immunonegative. Immunoreactivity corresponding to NTPDase2 decreased significantly at Eo and Ep and then returned to the baseline levels at Er. The preservation of the proportion of GFAP single-labeled and GFAP/NTPDase2 double-labeled elements along the course of EAE indicated that changes in NTPDase2-ir occurred at fibrous astrocytes that typically express NTPDase2 in normal conditions. Significant downregulation of P2Y1 and P2Y12 receptor proteins at Eo and several-fold induction of P2Y12 and P2Y13 receptor proteins at Ep and/or Er were observed implying that the pathophysiological process in EAE may be linked to ADP signaling. Cell-surface expression of NTPDase2, NTPDase1/CD39 and ecto-5′-nucleotidase (eN/CD73) was analyzed in CD4+ T cells of a draining lymph node by fluorescence-activated cell sorting. The induction of EAE was associated with a transient decrease in a number of CD4+ NTPDase2+ T cells in a draining lymph node, whereas the recovery was characterized by an increase in NTPDase2+ cells in both CD4+ and CD4− cell populations. The opposite was found for NTPDase1/CD39+ and eN/CD73+ cells, which slightly increased in number with progression of the disease, particularly in CD4− cells, and then decreased in the recovery. Finally, CD4+ NTPDase2+ cells were never observed in the spinal cord parenchyma. Taken together, our results suggest that the process of neuroinflammation in EAE may be associated with altered ADP signaling

    Agmatine Mitigates Inflammation-Related Oxidative Stress in BV-2 Cells by Inducing a Pre-Adaptive Response

    No full text
    Neuroinflammation and microglial activation, common components of most neurodegenerative diseases, can be imitated in vitro by challenging microglia cells with Lps. We here aimed to evaluate the effects of agmatine pretreatment on Lps-induced oxidative stress in a mouse microglial BV-2 cell line. Our findings show that agmatine suppresses nitrosative and oxidative burst in Lps-stimulated microglia by reducing iNOS and XO activity and decreasing O2− levels, arresting lipid peroxidation, increasing total glutathione content, and preserving GR and CAT activity. In accordance with these results, agmatine suppresses inflammatory NF-kB, and stimulates antioxidant Nrf2 pathway, resulting in decreased TNF, IL-1 beta, and IL-6 release, and reduced iNOS and COX-2 levels. Together with increased ARG1, CD206 and HO-1 levels, our results imply that, in inflammatory conditions, agmatine pushes microglia towards an anti-inflammatory phenotype. Interestingly, we also discovered that agmatine alone increases lipid peroxidation end product levels, induces Nrf2 activation, increases total glutathione content, and GPx activity. Thus, we hypothesize that some of the effects of agmatine, observed in activated microglia, may be mediated by induced oxidative stress and adaptive response, prior to Lps stimulation

    Benfotiamine Attenuates Inflammatory Response in LPS Stimulated BV-2 Microglia

    No full text
    <div><p>Microglial cells are resident immune cells of the central nervous system (CNS), recognized as key elements in the regulation of neural homeostasis and the response to injury and repair. As excessive activation of microglia may lead to neurodegeneration, therapeutic strategies targeting its inhibition were shown to improve treatment of most neurodegenerative diseases. Benfotiamine is a synthetic vitamin B1 (thiamine) derivate exerting potentially anti-inflammatory effects. Despite the encouraging results regarding benfotiamine potential to alleviate diabetic microangiopathy, neuropathy and other oxidative stress-induced pathological conditions, its activities and cellular mechanisms during microglial activation have yet to be elucidated. In the present study, the anti-inflammatory effects of benfotiamine were investigated in lipopolysaccharide (LPS)-stimulated murine BV-2 microglia. We determined that benfotiamine remodels activated microglia to acquire the shape that is characteristic of non-stimulated BV-2 cells. In addition, benfotiamine significantly decreased production of pro-inflammatory mediators such as inducible form of nitric oxide synthase (iNOS) and NO; cyclooxygenase-2 (COX-2), heat-shock protein 70 (Hsp70), tumor necrosis factor alpha α (TNF-α), interleukin-6 (IL-6), whereas it increased anti-inflammatory interleukin-10 (IL-10) production in LPS stimulated BV-2 microglia. Moreover, benfotiamine suppressed the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinases (JNK) and protein kinase B Akt/PKB. Treatment with specific inhibitors revealed that benfotiamine-mediated suppression of NO production was via JNK1/2 and Akt pathway, while the cytokine suppression includes ERK1/2, JNK1/2 and Akt pathways. Finally, the potentially protective effect is mediated by the suppression of translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the nucleus. Therefore, benfotiamine may have therapeutic potential for neurodegenerative diseases by inhibiting inflammatory mediators and enhancing anti-inflammatory factor production in activated microglia.</p></div

    Effect of benfotiamine on cytokines expression and the release by BV-2 cells.

    No full text
    <p>Expression of TNF-α (A, B), IL-6 (C, D) and IL-10 (E, F) was analyzed at mRNA (A, C, E) and protein (B, D, F) level. Abundance of each mRNA transcript was expressed relative to GAPDH as internal control. Release of the cytokines was determined in the culture supernatants by ELISA. Bars represent mean ± SEM from <i>n</i> = 3 separate determinations. Significance levels shown inside the graphs: * - <i>p</i> < 0.05 control <i>vs</i>. LPS-induced BV-2 cells; # — LPS <i>vs</i>. benfotiamine pretreated LPS activated BV-2 cells.</p

    The effect of benfotiamine on LPS—induced expression of proinflammatory effector molecules.

    No full text
    <p>(<b>A</b>) Expression of prostaglandin—endoperoxidase synthase 2 (PTGS2) at mRNA level in BV-2 cells. Expression of PTGS2-mRNA was assessed by RT-PCR, in control culture (white bar), LPS-treated culture (black bar) and cultures pre-treated with benfotiamine, 6 h following addition of LPS. PTGS2-mRNA abundance was expressed relative to the abundance of GAPDH-mRNA, as an internal control. (<b>B</b>) Expression of COX-2 at the protein level, determined by Western blot analysis. Bars show Cox-2/β-actin expression ratio relative to control (100%) ± SEM, from <i>n</i> = 3 separate determinations. Significance levels shown inside the graphs: *<i>p</i> < 0.05 control <i>vs</i>. LPS-induced BV-2 cells, # LPS <i>vs</i>. benfotiamine pretreated LPS activated BV-2 cells.</p

    Functional characterization of benfotiamine effects in LPS-stimulated BV-2 microglia.

    No full text
    <p>(<b>A</b>) Real-time monitoring of BV-2 cell viability using xCELLigence RTCA analyzer. Representative graph showing the rate of proliferation in cells incubated in control medium (red line), medium with 1 μg/ml LPS (black line), or cells pretreated with benfotiamine, 50 μM (pink line), 100 μM (blue line) or 250 μM (green line) and then treated with LPS for 24 h. (<b>B</b>) Benfotiamine- induced alterations in cell morphology were analyzed using phase-contrast microscopy (left panels), whereas cell surface area was quantified by Phalloidin /Hoechst fluorescent staining (red/blue) microscopy (right panels), using AxioVisionRel 4.6 software. Insets: cell surface area was measured in five areas (138 × 104 μm<sup>2</sup>) per each cover-slip (n = 3) per experimental group in three independent experiments. (<b>C</b>) Bars present mean surface areas (± SEM) obtained from data presented in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0118372#pone.0118372.g001" target="_blank">Fig. 1B</a>. (<b>D</b>) Cell viability was assessed by crystal violet staining and results are displayed as percentage of control ± SEM (n = 3). *P < 0.05 control vs. LPS-induced BV-2 cells, # LPS vs. benfotiamine pretreated LPS activated BV-2 cells. Scale bar: 20 μm.</p
    corecore