253 research outputs found

    NODE: a large‐scale seismic risk prioritization tool for Italy based on nominal structural performance

    Get PDF
    AbstractPrioritization of seismic risk mitigation at a large scale requires rough-input methodologies able to provide an expedited, yet conventional, assessment of the seismic risk corresponding to the portfolio of interest. In fact, an evaluation of seismic vulnerability at regional level by means of mechanics-based methods is generally only feasible for a fraction of the portfolio, selected according to prioritization criteria, due to the sheer volume of information and computational effort required. Therefore, conventional assessment of seismic risk via simple indices has been proposed in literature and in some guidelines, mainly based on the comparison of code requirements at the time of design and current seismic demand. These indices represent an attempt to define a relative seismic risk measure for a rapid ranking to identify the part of the portfolio that deserves further investigation. Although these risk metrics are based on strong assumptions, they have the advantage of only requiring easy-to-retrieve data, such as design year and location as the bare minimum, making them suitable for applications within the risk analysis industry. Moreover, they can take both hazard and vulnerability into account, albeit conventionally, and can be manipulated in order to account for exposure in terms of individual or societal risks. In the present study, the main assumptions, limitations, and possible evolutions of existing prioritization approaches to nominal risk are reviewed, with specific reference to the Italian case. Furthermore, this article presents the software NODE (available to interested readers), which enables the computation of location-specific code-based seismic performance demands, according to the Italian code and the evolution of seismic classification since 1909. Finally, this study intends to contribute to the ongoing debate on strategies for large-scale seismic assessment for building stock management purposes

    Engineering seismic demand in the 2012 Emilia sequence: preliminary analysis and model compatibility assessment

    Get PDF
    <p>The Emilia 2012 sequence featured seven events of moment magnitude (M) &gt;5, five of which occurred between May 20 and May 29, 2012. These earthquakes were structurally damaging over a wide area. The damage included partial or total collapse of industrial precast reinforced-concrete structures, historical masonry, and mainly nonstructural damage to reinforced-concrete buildings; see Section 8 (Data and sharing resources) for damage report repository. These structural typologies are, in principle, sensitive to different ground-motion intensity measures. For example, loss of support requires significant displacement demand at relatively long periods, while infilling damage is due to the ground-motion amplitude at higher frequencies, and masonry structures are comparatively more sensitive to the cyclic content of ground shaking. Moreover, because events were concentrated in time and space, it can be argued that the cumulative effects of the sequence contributed to the damage. As the current seismic code [C.S.LL.PP. 2008] uses a seismic hazard map [Stucchi et al. 2011] to determine the seismic actions for structural design, when a strong earthquake occurs, probabilistic estimates are understandably questioned for their consistency with respect to the observed ground motion. While it is easy to show that in terms of frequency of exceedance of intensity measures, the hazard can hardly be validated via the records of a single earthquake [e.g., Iervolino 2012], on the other hand, it can certainly be verified whether the observations are compatible or atypical with respect to what is predicted by the tools used in best-practice hazard studies. These issues mostly motivated the preliminary analysis briefly presented in this report; i.e., to investigate the engineering seismic demand (peak and cyclic) and to compare this with the prediction models. Both elastic and inelastic demands were considered. Indeed, the inelastic demands are more important from the structural engineering point of view. […]</p

    Rarity, proximity, and design actions: mapping strong earthquakes in Italy

    Get PDF
    At the state-of-the-art of structural codes, seismic design actions are based on probabilistic seismic hazard analysis (PSHA). In the performance-based earthquake engineering framework, the return period of exceedance of the reference ground motion is established based on the desired performance of the structure. It is easy to show and recognize that exceedance of elastic spectra, for the most common return periods considered for design, is very likely for some earthquakes if they occur close to the site of interest, and that this does not necessarily contradict the results of PSHA. Therefore, it might be relevant to gather insights about: (i) the probability that the site is in proximity of earthquakes of magnitude that can imply exceedance; (ii) the probability that earthquakes occurring close cause exceedance of design actions; (iii) the minimum magnitude of close-by events that are likely to cause exceedance of design actions, which are then referred to as the strong earthquakes; (iv) the accelerations that structures could be exposed to in the case of exceedance of design spectra. These results, which are produced for Italy in this study, may be considered by-products of PSHA, and are helpful in determining what to expect in terms of elastic actions for code-conforming structures in countries where probabilistic seismic hazard lies at the basis of structural design

    Exceedance of design actions in epicentral areas: insights from the ShakeMap envelopes for the 2016–2017 central Italy sequence

    Get PDF
    AbstractShakeMap is the tool to evaluate the ground motion effect of earthquakes in vast areas. It is useful to delimit the zones where the shaking is expected to have been most significant, for civil defense rapid response. From the earthquake engineering point of view, it can be used to infer the seismic actions on the built environment to calibrate vulnerability models or to define the reconstruction policies based on observed damage vs shaking. In the case of long-lasting seismic sequences, it can be useful to develop ShakeMap envelopes, that is, maps of the largest ground intensity among those from the ShakeMap of (selected) events of a seismic sequence, to delimit areas where the effects of the whole sequence have been of structural engineering relevance. This study introduces ShakeMap envelopes and discusses them for the central Italy 2016–2017 seismic sequence. The specific goals of the study are: (i) to compare the envelopes and the ShakeMap of the main events of the sequence to make the case for sequence-based maps; (ii) to quantify the exceedance of design seismic actions based on the envelopes; (iii) to make envelopes available for further studies and the reconstruction planning; (iv) to gather insights on the (repeated) exceedance of design seismic actions at some sites. Results, which include considerations of uncertainty in ShakeMap, show that the sequence caused exceedance of design hazard in thousands of square kilometers. The most relevant effects of the sequence are, as expected, due to the mainshock, yet seismic actions larger than those enforced by the code for structural design are found also around the epicenters of the smaller magnitude events. At some locations, the succession of ground-shaking that has excited structures, provides insights on structural damage accumulation that has likely taken place; something that is not accounted for explicitly in modern seismic design. The envelopes developed are available as supplemental material

    Comparing alternative models for multisite probabilistic seismic risk analysis

    Get PDF
    The risk assessment for a building portfolio or a spatially distributed infrastructure requires multi-site probabilistic seismic hazard analysis (MSPSHA). In fact, MSPSHA accounts for the stochastic dependency between the ground motion intensity measures (IMs) at the sites. Multi-site hazard needs to define the correlation structure for the same IM at different sites (spatial correlation), that of different IMs at the same site (cross-correlation) and that of different IMs at different sites (spatial-cross-correlation). Literature shows that such models usually require a significant amount of regional data to be semi-empirically calibrated. An approximated yet simpler-to-model alternative option is the conditional-hazard approach. The latter, originally developed for single-site analyses as an alternative to vector-valued PSHA, allows computing the distribution of a secondary IM given the occurrence or exceedance of a value of a primary IM. Conditional hazard considers the spatial correlation of the primary IM and the cross-correlation at each site for the two IMs, thus, if it is adopted for MSPSHA, the spatial correlation of the secondary IM as well as the spatial-cross-correlation between the two IMs descends from these two models. In the study, the conditional hazard procedure for MSPSHA is discussed and implemented in an illustrative application. Results in terms of distribution of the total number of exceedances of selected thresholds at the sites in a given time interval are compared with the case of complete formulation of MSPSHA and the differences are quantified. It appears that conditional hazard is a solid, yet simpler alternative for MSPSHA, at least in the considered cases.This paper was developed within the H2020-MSCA-RISE-2015 research project EXCHANGE-Risk (Grant Agreement No. 691213)

    REXELweb: a tool for selection of ground-motion records from the Engineering Strong Motion database (ESM)

    Get PDF
    This paper illustrates REXELweb, an updated online version of REXEL, which is a tool for the automatic selection and scaling of spectrum-compatible ground- motions for dynamic analysis of structures. REXELweb allows to define target spectra according to user-definition or design provisions (Eurocode 8 and Italian building code), as well as to uniform hazard spectra (UHS) based on a European hazard model. REXELweb implements all functionalities and options of REXEL through web-services that are accessible either via a MATHWORKS-MATLAB script or a user-friendly web-interface. The program selects records from the Engineering Strong Motion database (ESM), which is a daily-updated Pan-European repository of high-quality ground-motion records. These features make REXELweb a potentially useful tool for researchers and practitioners.Associazione Geotecnica ItalianaPublishedRome5T. Sismologia, geofisica e geologia per l'ingegneria sismic

    Hazard, ground motions, and code-based structural assessment: a few proposals and yet unfulfilled needs

    No full text
    Code-based structural assessment via nonlinear dynamic analysis requires seismic input believed to be a representation of the seismic threat to the site with respect to the limit-state of interest. Codes often are only slightly more specific than that, except prescribing to match a design spectral shape. Therefore, in record selection, several options, hearsays and beliefs may render the job especially hard for the analyst or, on the other side, heuristically simple, yet potentially inadequate to the scope. This paper, given the current European codes’ procedures, tries to discuss some tools which may help to address some basic issues related to seismic input selection. In fact, some recent achievements are reviewed first, these include: automated selection of real record sets; design earthquake maps from hazard disaggregation; conditional hazard maps to include secondary ground motion intensity measures (IMs) in definition of seismic action; and the use of alternate types of spectrum matching records. Furthermore, possible advancements, desirable to be accounted for by future codes, are also discussed: advanced ground motion IMs, and near-source pulse-like records. Only hints are given herein, while pointing to other papers most of them presented at this same conference
    corecore