7 research outputs found

    Incorporation of relative biological effectiveness uncertainties into proton plan robustness evaluation

    No full text
    <p><b>Background:</b> The constant relative biological effectiveness (RBE) of 1.1 is typically assumed in proton therapy. This study presents a method of incorporating the variable RBE and its uncertainties into the proton plan robustness evaluation.</p> <p><b>Material and methods:</b> The robustness evaluation was split into two parts. In part one, the worst-case physical dose was estimated using setup and range errors, including the fractionation dependence. The results were fed into part two, in which the worst-case RBE-weighted doses were estimated using a Monte Carlo method for sampling the input parameters of the chosen RBE model. The method was applied to three prostate, breast and head and neck (H&N) plans for several fractionation schedules using two RBE models. The uncertainties in the model parameters, linear energy transfer and α/β were included. The resulting DVH error bands were compared with the use of a constant RBE without uncertainties.</p> <p><b>Results:</b> All plans were evaluated as robust using the constant RBE. Applying the proposed methodology using the variable RBE models broadens the DVH error bands for all structures studied. The uncertainty in α/β was the dominant factor. The variable RBE also shifted the nominal DVHs towards higher doses for most OARs, whereas the direction of this shift for the clinical target volumes (CTVs) depended on the treatment site, RBE model and fractionation schedule. The average RBE within the CTV, using one of the RBE models and 2 Gy(RBE) per fraction, varied between 1.11–1.26, 1.06–1.16 and 1.14–1.25 for the breast, H&N and prostate patients, respectively.</p> <p><b>Conclusions:</b> A method of incorporating RBE uncertainties into the robustness evaluation has been proposed. By disregarding the variable RBE and its uncertainties, the variation in the RBE-weighted CTV and OAR doses may be underestimated. This could be an essential factor to take into account, especially in normal tissue complication probabilities based comparisons between proton and photon plans.</p

    Survival and tumour control probability in tumours with heterogeneous oxygenation: A comparison between the linear-quadratic and the universal survival curve models for high doses

    No full text
    <div><p></p><p><b>Background.</b> The validity of the linear-quadratic (LQ) model at high doses has been questioned due to a decreasing agreement between predicted survival and experimental cell survival data. A frequently proposed alternative is the universal survival curve (USC) model, thought to provide a better fit in the high-dose region. The comparison between the predictions of the models has mostly been performed for uniform populations of cells with respect to sensitivity to radiation. This study aimed to compare the two models in terms of cell survival and tumour control probability (TCP) for cell populations with mixed sensitivities related to their oxygenation.</p><p><b>Methods.</b> The study was performed in two parts. For the first part, cell survival curves were calculated with both models assuming various homogeneous populations of cells irradiated with uniform doses. For the second part, a realistic three-dimensional (3D) model of complex tumour oxygenation was used to study the impact of the differences in cell survival on the modelled TCP. Cellular response was assessed with the LQ and USC models at voxel level and a Poisson TCP model at tumour level.</p><p><b>Results.</b> For hypoxic tumours, the disputed continuous bend of the LQ survival curve was counteracted by the increased radioresistance of the hypoxic cells and the survival curves started to diverge only at much higher doses than for oxic tumours. This was also reflected by the TCP curves for hypoxic tumours for which the difference in <i>D</i><sub>50</sub> values for the LQ and USC models was reduced from 5.4 to 0.2 Gy for 1 and 3 fractions, respectively, in a tumour with only 1.1% hypoxia and from 9.5 to 0.4 Gy in a tumour with 11.1% hypoxia.</p><p><b>Conclusions.</b> For a large range of fractional doses including hypofractionated schemes, the difference in predicted survival and TCP between the LQ and USC models for tumours with heterogeneous oxygenation was found to be negligible.</p></div

    Multi-institutional study of the variability in target delineation for six targets commonly treated with radiosurgery

    No full text
    <p><b>Background:</b> Although accurate delineation of the target is a key factor of success in radiosurgery there are no consensus guidelines for target contouring. </p> <p><b>Aim:</b> The aim of the present study was therefore to quantify the variability in target delineation and discuss the potential clinical implications, for six targets regarded as common in stereotactic radiosurgery.</p> <p><b>Material and methods:</b> Twelve Gamma Knife centers participated in the study by contouring the targets and organs at risks and performing the treatment plans. Analysis of target delineation variability was based on metrics defined based on agreement volumes derived from overlapping structures following a previously developed method. The 50% agreement volume (AV<sub>50</sub>), the common and the encompassing volumes as well as the Agreement Volume Index (AVI) were determined.</p> <p><b>Results:</b> Results showed that the lowest AVI (0.16) was found for one of the analyzed metastases (range of delineated volumes 1.27–3.33 cm<sup>3</sup>). AVI for the other two metastases was 0.62 and 0.37, respectively. Corresponding AVIs for the cavernous sinus meningioma, pituitary adenoma and vestibular schwannoma were 0.22, 0.37 and 0.50.</p> <p><b>Conclusions:</b> This study showed that the variability in the contouring was much higher than expected and therefore further work in standardizing the contouring practice in radiosurgery is warranted.</p

    The influence of breathing motion and a variable relative biological effectiveness in proton therapy of left-sided breast cancer

    No full text
    <p><b>Background:</b> Proton breast radiotherapy has been suggested to improve target coverage as well as reduce cardiopulmonary and integral dose compared with photon therapy. This study aims to assess this potential when accounting for breathing motion and a variable relative biological effectiveness (RBE).</p> <p><b>Methods:</b> Photon and robustly optimized proton plans were generated to deliver 50 Gy (RBE) in 25 fractions (RBE = 1.1) to the CTV (whole left breast) for 12 patients. The plan evaluation was performed using the constant RBE and a variable RBE model. Robustness against breathing motion, setup, range and RBE uncertainties was analyzed using CT data obtained at free-breathing, breath-hold-at-inhalation and breath-hold-at-exhalation.</p> <p><b>Results:</b> All photon and proton plans (RBE = 1.1) met the clinical goals. The variable RBE model predicted an average RBE of 1.18 for the CTVs (range 1.14–1.21) and even higher RBEs in organs at risk (OARs). However, the dosimetric impact of this latter aspect was minor due to low OAR doses. The normal tissue complication probability (NTCP) for the lungs was low for all patients (<1%), and similar for photons and protons. The proton plans were generally considered robust for all patients. However, in the most extreme scenarios, the lowest dose received by 98% of the CTV dropped from 96 to 99% of the prescribed dose to around 92–94% for both protons and photons. Including RBE uncertainties in the robustness analysis resulted in substantially higher worst-case OAR doses.</p> <p><b>Conclusions:</b> Breathing motion seems to have a minor effect on the plan quality for breast cancer. The variable RBE might impact the potential benefit of protons, but could probably be neglected in most cases where the physical OAR doses are low. However, to be able to identify outlier cases at risk for high OAR doses, the biological evaluation of proton plans taking into account the variable RBE is recommended.</p

    Defining the hypoxic target volume based on positron emission tomography for image guided radiotherapy – the influence of the choice of the reference region and conversion function

    Get PDF
    <p><b>Background:</b> Hypoxia imaged by positron emission tomography (PET) is a potential target for optimization in radiotherapy. However, the implementation of this approach with respect to the conversion of intensities in the images into oxygenation and radiosensitivity maps is not straightforward. This study investigated the feasibility of applying two conversion approaches previously derived for <sup>18</sup>F-labeled fluoromisonidazole (<sup>18</sup>F-FMISO)-PET images for the hypoxia tracer <sup>18</sup>F-flortanidazole (<sup>18</sup>F-HX4).</p> <p><b>Material and methods:</b> Ten non-small-cell lung cancer patients imaged with <sup>18</sup>F-HX4 before the start of radiotherapy were considered in this study. PET image uptake was normalized to a well-oxygenated reference region and subsequently linear and non-linear conversions were used to determine tissue oxygenations maps. These were subsequently used to delineate hypoxic volumes based partial oxygen pressure (pO<sub>2</sub>) thresholds. The results were compared to hypoxic volumes segmented using a tissue-to-background ratio of 1.4 for <sup>18</sup>F-HX4 uptake.</p> <p><b>Results:</b> While the linear conversion function was not found to result in realistic oxygenation maps, the non-linear function resulted in reasonably sized sub-volumes in good agreement with uptake-based segmented volumes for a limited range of pO<sub>2</sub> thresholds. However, the pO<sub>2</sub> values corresponding to this range were significantly higher than what is normally considered as hypoxia. The similarity in size, shape, and relative location between uptake-based sub-volumes and volumes based on the conversion to pO<sub>2</sub> suggests that the relationship between uptake and pO<sub>2</sub> is similar for <sup>18</sup>F-FMISO and <sup>18</sup>F-HX4, but that the model parameters need to be adjusted for the latter.</p> <p><b>Conclusions:</b> A non-linear conversion function between uptake and oxygen partial pressure for <sup>18</sup>F-FMISO-PET could be applied to <sup>18</sup>F-HX4 images to delineate hypoxic sub-volumes of similar size, shape, and relative location as based directly on the uptake. In order to apply the model for e.g., dose-painting, new parameters need to be derived for the accurate calculation of dose-modifying factors for this tracer.</p

    Dosimetric evaluation of manually and inversely optimized treatment planning for high dose rate brachytherapy of cervical cancer

    No full text
    <div><p></p><p><b>Background.</b> To compare five inverse treatment planning methods with the conventional manually optimized planning approach for brachytherapy of cervical cancer with respect to dosimetric parameters.</p><p><b>Material and methods.</b> Eighteen cervical cancer patients treated with magnetic resonance imaging (MRI)-guided high dose rate (HDR) brachytherapy were included in this study. Six plans were created for each of the 4 HDR brachytherapy fractions for each patient: 1 manually optimized and 5 inversely planned. Three of these were based on inverse planning simulated annealing (IPSA) with and without extra constraints on maximum doses of the target volume, and different constraints on doses to the organs at risk (OARs). In addition there were two plans based on dose to target surface points. The resulting dose-volume histograms were analyzed and compared from the dosimetric point of view by quantifying specific dosimetric parameters, such as clinical target volume (CTV) D<sub>90</sub>, CTV D<sub>100</sub>, conformal index (COIN), and D<sub>2cm</sub>3 for rectum, bladder and the sigmoid colon.</p><p><b>Results.</b> Manual optimization led to a mean target coverage of 78.3% compared to 87.5%, 91.7% and 82.5% with the three IPSA approaches (p < 0.001). Similar COIN values for manual and inverse optimization were found. The manual optimization led to better results with respect to the dose to the OARs expressed as D<sub>2cm</sub>3. Overall, the best results were obtained with manual optimization and IPSA plans with volumetric constraints including maximum doses to the target volume.</p><p><b>Conclusions.</b> Dosimetric evaluation of manual and inverse optimization approaches is indicating the potential of IPSA for brachytherapy of cervical cancer. IPSA with constraints of maximum doses to the target volume is closer related to manual optimization than plans with constraints only to minimum dose to the target volume and maximum doses to OARs. IPSA plans with proper constraints performed better than those based on dose to target surface points and manually optimized plans.</p></div
    corecore