976 research outputs found

    Tensor Meson Production in Proton-Proton Collisions from the Color Glass Condensate

    Full text link
    We compute the inclusive cross-section of f2f_{2} tensor mesons production in proton-proton collisions at high-energy. We use an effective theory inspired from the tensor meson dominance hypothesis that couples gluons to f2f_{2} mesons. We compute the differential cross-section in the k⊥k_{\perp}-factorization and in the Color Glass Condensate formalism in the low density regime. We show that the two formalisms are equivalent for this specific observable. Finally, we study the phenomenology of f2f_{2} mesons by comparing theoretical predictions of different parameterizations of the unintegrated gluon distribution function. We find that f2f_{2}-meson production is another observable that can be used to put constraints on these distributions.Comment: 26 pages, 3 figures, to be submitted in Phys. Rev.

    Generating loop graphs via Hopf algebra in quantum field theory

    Full text link
    We use the Hopf algebra structure of the time-ordered algebra of field operators to generate all connected weighted Feynman graphs in a recursive and efficient manner. The algebraic representation of the graphs is such that they can be evaluated directly as contributions to the connected n-point functions. The recursion proceeds by loop order and vertex number.Comment: 22 pages, LaTeX + AMS + eepic; new section with alternative recursion formula added, further minor changes and correction

    Intersection theory from duality and replica

    Full text link
    Kontsevich's work on Airy matrix integrals has led to explicit results for the intersection numbers of the moduli space of curves. In this article we show that a duality between k-point functions on N×NN\times N matrices and N-point functions of k×kk\times k matrices, plus the replica method, familiar in the theory of disordered systems, allows one to recover Kontsevich's results on the intersection numbers, and to generalize them to other models. This provides an alternative and simple way to compute intersection numbers with one marked point, and leads also to some new results

    A remark on the matrix Airy function

    Full text link
    An integral representation for matrix Airy function is presentedComment: 4 page

    Many-Body Theory of the Electroweak Nuclear Response

    Full text link
    After a brief review of the theoretical description of nuclei based on nonrelativistic many-body theory and realistic hamiltonians, these lectures focus on its application to the analysis of the electroweak response. Special emphasis is given to electron-nucleus scattering, whose experimental study has provided a wealth of information on nuclear structure and dynamics, exposing the limitations of the shell model. The extension of the formalism to the case of neutrino-nucleus interactions, whose quantitative understanding is required to reduce the systematic uncertainty of neutrino oscillation experiments, is also discussed.Comment: Lectures delivered at the DAE-BRNS Workshop on Hadron Physics. Aligarh Muslim University, Aligarh (India), February 18-23, 200

    Relation between phase and dwell times for quantum tunneling of a relativistically propagating particle

    Full text link
    The general and explicit relation between the phase time and the dwell time for quantum tunneling of a relativistically propagating particle is investigated and quantified. In analogy with previously obtained non-relativistic results, it is shown that the group delay can be described in terms of the dwell time and a self-interference delay. Lessons concerning the phenomenology of the relativistic tunneling are drawn

    Surface plasmon modes and the Casimir energy

    Full text link
    We show the influence of surface plasmons on the Casimir effect between two plane parallel metallic mirrors at arbitrary distances. Using the plasma model to describe the optical response of the metal, we express the Casimir energy as a sum of contributions associated with evanescent surface plasmon modes and propagative cavity modes. In contrast to naive expectations, the plasmonic modes contribution is essential at all distances in order to ensure the correct result for the Casimir energy. One of the two plasmonic modes gives rise to a repulsive contribution, balancing out the attractive contributions from propagating cavity modes, while both contributions taken separately are much larger than the actual value of the Casimir energy. This also suggests possibilities to tailor the sign of the Casimir force via surface plasmons.Comment: 4 pages, 3 figures, revtex

    No Drama Quantum Theory?

    Full text link
    This work builds on the following result of a previous article (quant-ph/0509044): the matter field can be naturally eliminated from the equations of the scalar electrodynamics (the Klein-Gordon-Maxwell electrodynamics) in the unitary gauge. The resulting equations describe independent dynamics of the electromagnetic field (they form a closed system of partial differential equations). An improved derivation of this surprising result is offered in the current work. It is also shown that for this system of equations, a generalized Carleman linearization (Carleman embedding) procedure generates a system of linear equations in the Hilbert space, which looks like a second-quantized theory and is equivalent to the original nonlinear system on the set of solutions of the latter. Thus, the relevant local realistic model can be embedded into a quantum field theory. This model is equivalent to a well-established model - the scalar electrodynamics, so it correctly describes a large body of experimental data. Although it does not describe the electronic spin and possibly some other experimental facts, it may be of great interest as a "no drama quantum theory", as simple (in principle) as classical electrodynamics. Possible issues with the Bell theorem are discussed.Comment: 4 page

    Viability of vector-tensor theories of gravity

    Full text link
    We present a detailed study of the viability of general vector-tensor theories of gravity in the presence of an arbitrary temporal background vector field. We find that there are six different classes of theories which are indistinguishable from General Relativity by means of local gravity experiments. We study the propagation speeds of scalar, vector and tensor perturbations and obtain the conditions for classical stability of those models. We compute the energy density of the different modes and find the conditions for the absence of ghosts in the quantum theory. We conclude that the only theories which can pass all the viability conditions for arbitrary values of the background vector field are not only those of the pure Maxwell type, but also Maxwell theories supplemented with a (Lorentz type) gauge fixing term.Comment: 13 pages, 2 figures, 1 table. Final version to appear in JCA

    Potentially Large One-loop Corrections to WIMP Annihilation

    Full text link
    We compute one-loop corrections to the annihilation of non--relativistic particles χ\chi due to the exchange of a (gauge or Higgs) boson ϕ\phi with mass μ\mu in the initial state. In the limit mχ≫μm_\chi \gg \mu this leads to the "Sommerfeld enhancement" of the annihilation cross section. However, here we are interested in the case \mu \lsim m_\chi, where the one--loop corrections are well--behaved, but can still be sizable. We find simple and accurate expressions for annihilation from both S−S- and P−P-wave initial states; they differ from each other if μ≠0\mu \neq 0. In order to apply our results to the calculation of the relic density of Weakly Interacting Massive Particles (WIMPs), we describe how to compute the thermal average of the corrected cross sections. We apply this formalism to scalar and Dirac fermion singlet WIMPs, and show that the corrections are always very small in the former case, but can be very large in the latter. Moreover, in the context of the Minimal Supersymmetric Standard Model, these corrections can decrease the relic density of neutralinos by more than 1%, if the lightest neutralino is a strongly mixed state.Comment: 25 pages, 8 figures. Added an appendix showing that the approximation works well in a scalar toy model. To be published in PRD
    • …
    corecore