422 research outputs found

    Towards a SDLCQ test of the Maldacena Conjecture

    Get PDF
    We consider the Maldacena conjecture applied to the near horizon geometry of a D1-brane in the supergravity approximation and present numerical results of a test of the conjecture against the boundary field theory calculation using DLCQ. We previously calculated the two-point function of the stress-energy tensor on the supergravity side; the methods of Gubser, Klebanov, Polyakov, and Witten were used. On the field theory side, we derived an explicit expression for the two-point function in terms of data that may be extracted from the supersymmetric discrete light cone quantization (SDLCQ) calculation at a given harmonic resolution. This yielded a well defined numerical algorithm for computing the two-point function. For the supersymmetric Yang-Mills theory with 16 supercharges that arises in the Maldacena conjecture, the algorithm is perfectly well defined; however, the size of the numerical computation prevented us from obtaining a numerical check of the conjecture. We now present numerical results with approximately 1000 times as many states as we previously considered. These results support the Maldacena conjecture and are within 10−1510-15% of the predicted numerical results in some regions. Our results are still not sufficient to demonstrate convergence, and, therefore, cannot be considered to a numerical proof of the conjecture. We present a method for using a ``flavor'' symmetry to greatly reduce the size of the basis and discuss a numerical method that we use which is particularly well suited for this type of matrix element calculation.Comment: 10 pages, 1 figur

    Black hole thermalization rate from brane anti-brane model

    Full text link
    We develop the quasi-particle picture for Schwarzchild and far from extremal black holes. We show that the thermalization equations of the black hole is recovered from the model of branes and anti-branes. This can also be viewed as a field theory explanation of the relationship between area and entropy for these black holes. As a by product the annihilation rate of branes and anti-branes is computed.Comment: 11 pages, late

    Non-Supersymmetric Deformations of Non-Critical Superstrings

    Full text link
    We study certain supersymmetry breaking deformations of linear dilaton backgrounds in different dimensions. In some cases, the deformed theory has bulk closed strings tachyons. In other cases there are no bulk tachyons, but there are localized tachyons. The real time condensation of these localized tachyons is described by an exactly solvable worldsheet CFT. We also find some stable, non-supersymmetric backgrounds.Comment: 33 pages, references adde

    Exotic polarizations of D2 branes and oblique vacua of (S)YM2+1_{2+1}

    Full text link
    We investigate the oblique vacua in the perturbed 2+1 dimensional gauge theory living on D2 branes. The string theory dual of these vacua is expected to correspond to polarizations of the D2 branes into NS5 branes with D4 brane charge. We perturb the gauge theory by adding fermions masses. In the nonsupersymmetric case, we also consider the effect of slight variations of the masses of the scalars. For certain ranges of scalar masses we find oblique vacua. We show that D4 charge is an essential ingredient in understanding D2 -> NS5 polarizations. We find that some of the polarization states which appear as metastable vacua when D4 charge is not considered are in fact unstable. They decay by acquiring D4 charge, tilting and shrinking to zero size.Comment: 15 pages, 3 figures, LaTe

    New Reducible Five-brane Solutions in M-theory

    Full text link
    We construct new M-theory solutions of M5 branes that are a realization of the fully localized ten dimensional NS5/D6 and NS5/D5 brane intersections. These solutions are obtained by embedding self-dual geometries lifted to M-theory. We reduce these solutions down to ten dimensions, obtaining new D-brane systems in type IIA/IIB supergravity. The worldvolume theories of the NS5-branes are new non-local, non-gravitational, six dimensional, T-dual little string theories with eight supersymmetries.Comment: 19 pages, 4 figures, two paragraphs added in conclusions, typos correcte

    String dynamics near a Kaluza-Klein black hole

    Get PDF
    The dynamics of a string near a Kaluza-Klein black hole are studied. Solutions to the classical string equations of motion are obtained using the world sheet velocity of light as an expansion parameter. The electrically and magnetically charged cases are considered separately. Solutions for string coordinates are obtained in terms of the world-sheet coordinate τ\tau. It is shown that the Kaluza-Klein radius increases/decreases with τ\tau for electrically/magnetically charged black hole.Comment: Latex2e file with six postscript figures. Minor changes, more accurate numerical results and updated reference

    A Phase Transition between Small and Large Field Models of Inflation

    Full text link
    We show that models of inflection point inflation exhibit a phase transition from a region in parameter space where they are of large field type to a region where they are of small field type. The phase transition is between a universal behavior, with respect to the initial condition, at the large field region and non-universal behavior at the small field region. The order parameter is the number of e-foldings. We find integer critical exponents at the transition between the two phases.Comment: 21 pages, 8 figure

    Long Strings, Anomaly Cancellation, Phase Transitions, T-duality and Locality in the 2d Heterotic String

    Full text link
    We study the noncritical two-dimensional heterotic string. Long fundamental strings play a crucial role in the dynamics. They cancel anomalies and lead to phase transitions when the system is compactified on a Euclidean circle. A careful analysis of the gauge symmetries of the system uncovers new subtleties leading to modifications of the worldsheet results. The compactification on a Euclidean thermal circle is particularly interesting. It leads us to an incompatibility between T-duality (and its corresponding gauge symmetry) and locality.Comment: 36 pages, 2 figure

    Counting Supertubes

    Full text link
    The quantum states of the supertube are counted by directly quantizing the linearized Born-Infeld action near the round tube. The result is an entropy S=2π2(QD0QF1−J)S = 2\pi \sqrt{2 (Q_{D0}Q_{F1}-J)}, in accord with conjectures in the literature. As a result, supertubes may be the generic D0-F1 bound state. Our approach also shows directly that supertubes are marginal bound states with a discrete spectrum. We also discuss the relation to recent suggestions of Mathur et al involving three-charge black holes.Comment: 15 pages, v2: reference corrected; v3: few corrections and explicit derivation of a relation are added to appendix

    A brief review of "little string theories"

    Get PDF
    This is a brief review of the current state of knowledge on "little string theories", which are non-gravitational theories having several string-like properties. We focus on the six dimensional maximally supersymmetric "little string theories" and describe their definition, some of their simple properties, the motivations for studying them, the DLCQ and holographic constructions of these theories and their behaviour at finite energy density. (Contribution to the proceedings of Strings '99 in Potsdam, Germany.)Comment: 11 pages, contribution to Strings '99 proceeding
    • 

    corecore