1,054 research outputs found

    Free Energies and Probe Actions for Near-horizon D-branes and D1 + D5 System

    Get PDF
    By working with the free energy for the type II supergravity near-horizon solution of N coincident non-extremal Dp-branes we study the transitions among the non-conformal Dp-brane system, the perturbative super Yang-Mills theory and a certain system associated with M theory. We derive a relation between this free energy and the action of a Dp-brane probe in the N Dp-brane background. Constructing the free energy for the five dimensional black hole labeled by the D1-brane and D5-brane charges we find the similar relation between it and the action of a D1 or D5 brane probe in the D1 + D5 brane background. These relations are explained by the massive open strings stretched between the relevant D-branesComment: 14 pages, LaTeX2e, no figure

    Cosmological Imprints of Pre-Inflationary Particles

    Full text link
    We study some of the cosmological imprints of pre-inflationary particles. We show that each such particle provides a seed for a spherically symmetric cosmic defect. The profile of this cosmic defect is fixed and its magnitude is linear in a single parameter that is determined by the mass of the pre-inflationary particle. We study the CMB and peculiar velocity imprints of this cosmic defect and suggest that it could explain some of the large scale cosmological anomalies.Comment: 31 pages, 7 figure

    A UV completion of scalar electrodynamics

    Full text link
    In previous works, we constructed UV-finite and unitary scalar field theories with an infinite spectrum of propagating modes for arbitrary polynomial interactions. In this paper, we introduce infinitely many massive vector fields into a U(1) gauge theory to construct a theory with UV-finiteness and unitarity.Comment: 25 page

    How Sensitive is the CMB to a Single Lens?

    Full text link
    We study the imprints of a single lens, that breaks statistical isotropy, on the CMB and calculate the signal to noise ratio (S/N) for its detection. We emphasize the role of non-Gaussianities induced by LCDM weak lensing in this calculation and show that typically the S/N is much smaller than expected. In particular we find that the hypothesis that a void (texture) is responsible for the WMAP cold spot can barely (cannot) be tested via weak lensing of the CMB.Comment: Accepted for publication in JCAP, 24 pages, 5 figure

    Black Hole Information vs. Locality

    Full text link
    We discuss the limitations on space time measurement in the Schwarzchild metric. We find that near the horizon the limitations on space time measurement are of the order of the black hole radius. We suggest that it indicates that a large mass black hole cannot be described by means of local field theory even at macroscopic distances and that any attempt to describe black hole formation and evaporation by means of an effective local field theory will necessarily lead to information loss. We also present a new interpretation of the black hole entropy which leads to S=cAS=cA , where cc is a constant of order 11 which does not depend on the number of fields.Comment: 19 pages, final version to appear in Phys. Rev.

    Non-Supersymmetric Deformations of Non-Critical Superstrings

    Full text link
    We study certain supersymmetry breaking deformations of linear dilaton backgrounds in different dimensions. In some cases, the deformed theory has bulk closed strings tachyons. In other cases there are no bulk tachyons, but there are localized tachyons. The real time condensation of these localized tachyons is described by an exactly solvable worldsheet CFT. We also find some stable, non-supersymmetric backgrounds.Comment: 33 pages, references adde

    PP-wave and Non-supersymmetric Gauge Theory

    Full text link
    We extend the pp-wave correspondence to a non supersymmetric example. The model is the type 0B string theory on the pp-wave R-R background. We explicitly solve the model and give the spectrum of physical states. The field theory counterpart is given by a sector of the large N SU(N) x SU(N) CFT living on a stack of N electric and N magnetic D3-branes. The relevant effective coupling constant is g_{eff}=g_sN/J^2. The string theory has a tachyon in the spectrum, whose light-cone energy can be exactly computed as a function of g_{eff}. We argue that the perturbative analysis in g_{eff} in the dual gauge theory is reliable, with corrections of non perturbative type. We find a precise state/operator map, showing that the first perturbative corrections to the anomalous dimensions of the operators have the behavior expected from the string analysis.Comment: 19 pages. Revised versio

    Parallel and Sequential Pathways of Molecular Recognition of a Tandem-Repeat Protein and Its Intrinsically Disordered Binding Partner.

    Get PDF
    The Wnt signalling pathway plays an important role in cell proliferation, differentiation, and fate decisions in embryonic development and the maintenance of adult tissues. The twelve armadillo (ARM) repeat-containing protein β-catenin acts as the signal transducer in this pathway. Here, we investigated the interaction between β-catenin and the intrinsically disordered transcription factor TCF7L2, comprising a very long nanomolar-affinity interface of approximately 4800 Å2 that spans ten of the twelve ARM repeats of β-catenin. First, a fluorescence reporter system for the interaction was engineered and used to determine the kinetic rate constants for the association and dissociation. The association kinetics of TCF7L2 and β-catenin were monophasic and rapid (7.3 ± 0.1 × 107 M-1·s-1), whereas dissociation was biphasic and slow (5.7 ± 0.4 × 10-4 s-1, 15.2 ± 2.8 × 10-4 s-1). This reporter system was then combined with site-directed mutagenesis to investigate the striking variability in the conformation adopted by TCF7L2 in the three different crystal structures of the TCF7L2-β-catenin complex. We found that the mutation had very little effect on the association kinetics, indicating that most interactions form after the rate-limiting barrier for association. Mutations of the N- and C-terminal subdomains of TCF7L2 that adopt relatively fixed conformations in the crystal structures had large effects on the dissociation kinetics, whereas the mutation of the labile sub-domain connecting them had negligible effect. These results point to a two-site avidity mechanism of binding with the linker region forming a "fuzzy" complex involving transient contacts that are not site-specific. Strikingly, the two mutations in the N-terminal subdomain that had the largest effects on the dissociation kinetics showed two additional phases, indicating partial flux through an alternative dissociation pathway that is inaccessible to the wild type. The results presented here provide insights into the kinetics of the molecular recognition of a long intrinsically disordered region with an elongated repeat-protein surface, a process found to involve parallel routes with sequential steps in each

    On semiclassical calculation of three-point functions in AdS_5 \times T^(1,1)

    Full text link
    Recently there has been progress on the computation of two- and three-point correlation functions with two "heavy" states via semiclassical methods. We extend this analysis to the case of AdS_5 \times T^(1,1), and examine the suggested procedure for the case of several simple string solutions. By making use of AdS/CFT duality, we derive the relevant correlation functions of operators belonging to the dual gauge theory.Comment: 18 pages, added referenc
    corecore