948 research outputs found

    SeizureNet: Multi-Spectral Deep Feature Learning for Seizure Type Classification

    Full text link
    Automatic classification of epileptic seizure types in electroencephalograms (EEGs) data can enable more precise diagnosis and efficient management of the disease. This task is challenging due to factors such as low signal-to-noise ratios, signal artefacts, high variance in seizure semiology among epileptic patients, and limited availability of clinical data. To overcome these challenges, in this paper, we present SeizureNet, a deep learning framework which learns multi-spectral feature embeddings using an ensemble architecture for cross-patient seizure type classification. We used the recently released TUH EEG Seizure Corpus (V1.4.0 and V1.5.2) to evaluate the performance of SeizureNet. Experiments show that SeizureNet can reach a weighted F1 score of up to 0.94 for seizure-wise cross validation and 0.59 for patient-wise cross validation for scalp EEG based multi-class seizure type classification. We also show that the high-level feature embeddings learnt by SeizureNet considerably improve the accuracy of smaller networks through knowledge distillation for applications with low-memory constraints

    Saliency Benchmarking Made Easy: Separating Models, Maps and Metrics

    Full text link
    Dozens of new models on fixation prediction are published every year and compared on open benchmarks such as MIT300 and LSUN. However, progress in the field can be difficult to judge because models are compared using a variety of inconsistent metrics. Here we show that no single saliency map can perform well under all metrics. Instead, we propose a principled approach to solve the benchmarking problem by separating the notions of saliency models, maps and metrics. Inspired by Bayesian decision theory, we define a saliency model to be a probabilistic model of fixation density prediction and a saliency map to be a metric-specific prediction derived from the model density which maximizes the expected performance on that metric given the model density. We derive these optimal saliency maps for the most commonly used saliency metrics (AUC, sAUC, NSS, CC, SIM, KL-Div) and show that they can be computed analytically or approximated with high precision. We show that this leads to consistent rankings in all metrics and avoids the penalties of using one saliency map for all metrics. Our method allows researchers to have their model compete on many different metrics with state-of-the-art in those metrics: "good" models will perform well in all metrics.Comment: published at ECCV 201

    Integrating Low-Level and Semantic Visual Cues for Improved Image-to-Video Experiences

    Full text link

    Contextual cropping and scaling of TV productions

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-011-0804-3. Copyright @ Springer Science+Business Media, LLC 2011.In this paper, an application is presented which automatically adapts SDTV (Standard Definition Television) sports productions to smaller displays through intelligent cropping and scaling. It crops regions of interest of sports productions based on a smart combination of production metadata and systematic video analysis methods. This approach allows a context-based composition of cropped images. It provides a differentiation between the original SD version of the production and the processed one adapted to the requirements for mobile TV. The system has been comprehensively evaluated by comparing the outcome of the proposed method with manually and statically cropped versions, as well as with non-cropped versions. Envisaged is the integration of the tool in post-production and live workflows

    Contribution of Color Information in Visual Saliency Model for Videos

    No full text
    International audienceMuch research has been concerned with the contribution of the low level features of a visual scene to the deployment of visual attention. Bottom-up saliency models have been developed to predict the location of gaze according to these features. So far, color besides to brightness, contrast and motion is considered as one of the primary features in computing bottom-up saliency. However, its contribution in guiding eye movements when viewing natural scenes has been debated. We investigated the contribution of color information in a bottom-up visual saliency model. The model efficiency was tested using the experimental data obtained on 45 observers who were eye tracked while freely exploring a large data set of color and grayscale videos. The two datasets of recorded eye positions, for grayscale and color videos, were compared with a luminance-based saliency model. We incorporated chrominance information to the model. Results show that color information improves the performance of the saliency model in predicting eye positions

    FASA: Fast, Accurate, and Size-Aware Salient Object Detection

    Get PDF
    Fast and accurate salient-object detectors are important for various image processing and computer vision applications, such as adaptive compression and object segmentation. It is also desirable to have a detector that is aware of the position and the size of the salient objects. In this paper, we propose a salient-object detection method that is fast, accurate, and size-aware. For efficient computation, we quantize the image colors and estimate the spatial positions and sizes of the quantized colors. We then feed these values into a statistical model to obtain a probability of saliency. In order to estimate the final saliency, this probability is combined with a global color contrast measure. We test our method on two public datasets and show that our method significantly outperforms the fast state-of-the-art methods. In addition, it has comparable performance and is an order of magnitude faster than the accurate state-of-the-art methods. We exhibit the potential of our algorithm by processing a high-definition video in real time

    Display blindness? Looking again at the visibility of situated displays using eye tracking

    Get PDF
    Observational studies of situated displays have suggested that they are rarely looked at, and when they are it is typically only for a short period of time. Using a mobile eye tracker during a realistic shopping task in a shopping center, we show that people look at displays more than would be predicted from these observational studies, but still only short glances and often from quite far away. We characterize the patterns of eye-movements that precede looking at a display and discuss some of the design implications for the design of situated display technologies that are deployed in public space

    On the Distribution of Salient Objects in Web Images and its Influence on Salient Object Detection

    Get PDF
    It has become apparent that a Gaussian center bias can serve as an important prior for visual saliency detection, which has been demonstrated for predicting human eye fixations and salient object detection. Tseng et al. have shown that the photographer's tendency to place interesting objects in the center is a likely cause for the center bias of eye fixations. We investigate the influence of the photographer's center bias on salient object detection, extending our previous work. We show that the centroid locations of salient objects in photographs of Achanta and Liu's data set in fact correlate strongly with a Gaussian model. This is an important insight, because it provides an empirical motivation and justification for the integration of such a center bias in salient object detection algorithms and helps to understand why Gaussian models are so effective. To assess the influence of the center bias on salient object detection, we integrate an explicit Gaussian center bias model into two state-of-the-art salient object detection algorithms. This way, first, we quantify the influence of the Gaussian center bias on pixel- and segment-based salient object detection. Second, we improve the performance in terms of F1 score, Fb score, area under the recall-precision curve, area under the receiver operating characteristic curve, and hit-rate on the well-known data set by Achanta and Liu. Third, by debiasing Cheng et al.'s region contrast model, we exemplarily demonstrate that implicit center biases are partially responsible for the outstanding performance of state-of-the-art algorithms. Last but not least, as a result of debiasing Cheng et al.'s algorithm, we introduce a non-biased salient object detection method, which is of interest for applications in which the image data is not likely to have a photographer's center bias (e.g., image data of surveillance cameras or autonomous robots)

    Winner-take-all selection in a neural system with delayed feedback

    Full text link
    We consider the effects of temporal delay in a neural feedback system with excitation and inhibition. The topology of our model system reflects the anatomy of the avian isthmic circuitry, a feedback structure found in all classes of vertebrates. We show that the system is capable of performing a `winner-take-all' selection rule for certain combinations of excitatory and inhibitory feedback. In particular, we show that when the time delays are sufficiently large a system with local inhibition and global excitation can function as a `winner-take-all' network and exhibit oscillatory dynamics. We demonstrate how the origin of the oscillations can be attributed to the finite delays through a linear stability analysis.Comment: 8 pages, 6 figure

    Bayesian Surprise in Indoor Environments

    Full text link
    This paper proposes a novel method to identify unexpected structures in 2D floor plans using the concept of Bayesian Surprise. Taking into account that a person's expectation is an important aspect of the perception of space, we exploit the theory of Bayesian Surprise to robustly model expectation and thus surprise in the context of building structures. We use Isovist Analysis, which is a popular space syntax technique, to turn qualitative object attributes into quantitative environmental information. Since isovists are location-specific patterns of visibility, a sequence of isovists describes the spatial perception during a movement along multiple points in space. We then use Bayesian Surprise in a feature space consisting of these isovist readings. To demonstrate the suitability of our approach, we take "snapshots" of an agent's local environment to provide a short list of images that characterize a traversed trajectory through a 2D indoor environment. Those fingerprints represent surprising regions of a tour, characterize the traversed map and enable indoor LBS to focus more on important regions. Given this idea, we propose to use "surprise" as a new dimension of context in indoor location-based services (LBS). Agents of LBS, such as mobile robots or non-player characters in computer games, may use the context surprise to focus more on important regions of a map for a better use or understanding of the floor plan.Comment: 10 pages, 16 figure
    • …
    corecore