24 research outputs found
Age-related subproteomic analysis of mouse liver and kidney peroxisomes
<p>Abstract</p> <p>Background</p> <p>Despite major recent advances in the understanding of peroxisomal functions and how peroxisomes arise, only scant information is available regarding this organelle in cellular aging. The aim of this study was to characterize the changes in the protein expression profile of aged versus young liver and kidney peroxisome-enriched fractions from mouse and to suggest possible mechanisms underlying peroxisomal aging. Peroxisome-enriched fractions from 10 weeks, 18 months and 24 months C57bl/6J mice were analyzed by quantitative proteomics.</p> <p>Results</p> <p>Peroxisomal proteins were enriched by differential and density gradient centrifugation and proteins were separated by two-dimensional electrophoresis (2-DE), quantified and identified by mass spectrometry (MS). In total, sixty-five proteins were identified in both tissues. Among them, 14 proteins were differentially expressed in liver and 21 proteins in kidney. The eight proteins differentially expressed in both tissues were involved in β-oxidation, α-oxidation, isoprenoid biosynthesis, amino acid metabolism, and stress response. Quantitative proteomics, clustering methods, and prediction of transcription factors, all indicated that there is a decline in protein expression at 18 months and a recovery at 24 months.</p> <p>Conclusion</p> <p>These results indicate that some peroxisomal proteins show a tissue-specific functional response to aging. This response is probably dependent on their differential regeneration capacity. The differentially expressed proteins could lead several cellular effects: such as alteration of fatty acid metabolism that could alert membrane protein functions, increase of the oxidative stress and contribute to decline in bile salt synthesis. The ability to detect age-related variations in the peroxisomal proteome can help in the search for reliable and valid aging biomarkers.</p
Proteins differentially expressed in the 18 months and 24 months versus 10-weeks old group
<p><b>Copyright information:</b></p><p>Taken from "Age-related subproteomic analysis of mouse liver and kidney peroxisomes"</p><p>http://www.proteomesci.com/content/5/1/19</p><p>Proteome Science 2007;5():19-19.</p><p>Published online 27 Nov 2007</p><p>PMCID:PMC2231346.</p><p></p> The ratios were calculated dividing the volume percentage per each spot from the 18 months or 24 months by the volume percentage per spot in the 10 weeks old group. The vertical axis corresponds to the average ratio of expression, above the 0 value for the up-regulated proteins and below the 0 value for the down-regulated ones. According to 18 months old group, in the horizontal axis the down-regulated proteins are organized with the lowest values on the left side and the up-regulated ones show the highest values on the right side. Color code: green for 18 months group and orange for the 24 months old group. Liver age-related proteins. Kidney age-related proteins. Differential spot detection in fold from the 8 proteins composing the common age-related PES to both tissues. The four groups correspond to 18 months liver, 24 months liver, 18 months kidney and 24 months kidney samples
Type 1 diabetes contributes to combined pulmonary fibrosis and emphysema in male alpha 1 antitrypsin deficient mice.
Type 1 diabetes (T1D) is a metabolic disease characterized by hyperglycemia and can affect multiple organs, leading to life-threatening complications. Increased prevalence of pulmonary disease is observed in T1D patients, and diabetes is a leading cause of comorbidity in several lung pathologies. A deficiency of alpha-1 antitrypsin (AAT) can lead to the development of emphysema. Decreased AAT plasma concentrations and anti-protease activity are documented in T1D patients. The objective of this study was to determine whether T1D exacerbates the progression of lung damage in AAT deficiency. First, pulmonary function testing (PFT) and histopathological changes in the lungs of C57BL/6J streptozotocin (STZ)-induced T1D mice were investigated 3 and 6 months after the onset of hyperglycemia. PFT demonstrated a restrictive pulmonary pattern in the lungs of STZ-injected mice, along with upregulation of mRNA expression of pro-fibrotic markers Acta2, Ccn2, and Fn1. Increased collagen deposition was observed 6 months after the onset of hyperglycemia. To study the effect of T1D on the progression of lung damage in AAT deficiency background, C57BL/6J AAT knockout (KO) mice were used. Control and STZ-challenged AAT KO mice did not show significant changes in lung function 3 months after the onset of hyperglycemia. However, histological examination of the lung demonstrated increased collagen accumulation and alveolar space enlargement in STZ-induced AAT KO mice. AAT pretreatment on TGF-β-stimulated primary lung fibroblasts reduced mRNA expression of pro-fibrotic markers ACTA2, CCN2, and FN1. Induction of T1D in AAT deficiency leads to a combined pulmonary fibrosis and emphysema (CPFE) phenotype in male mice
Therapeutic Potential of Alpha-1 Antitrypsin in Type 1 and Type 2 Diabetes Mellitus
Alpha-1 antitrypsin (AAT) has established anti-inflammatory and immunomodulatory effects in chronic obstructive pulmonary disease but there is increasing evidence of its role in other inflammatory and immune-mediated conditions, like diabetes mellitus (DM). AAT activity is altered in both developing and established type 1 diabetes mellitus (T1DM) as well in established type 2 DM (T2DM). Augmentation therapy with AAT appears to favorably impact T1DM development in mice models and to affect β-cell function and inflammation in humans with T1DM. The role of AAT in T2DM is less clear, but AAT activity appears to be reduced in T2DM. This article reviews these associations and emerging therapeutic strategies using AAT to treat DM
Recommended from our members
Decreased surfactant lipids correlate with lung function in chronic obstructive pulmonary disease (COPD)
Smoke exposure is known to decrease total pulmonary surfactant and alter its composition, but the role of surfactant in chronic obstructive pulmonary disease (COPD) remains unknown. We aimed to analyze the compositional changes in the surfactant lipidome in COPD and identify specific lipids associated with pulmonary function decline. Bronchoalveolar lavage (BAL) fluid was obtained from 12 former smokers with COPD and 5 non-smoking, non-asthmatic healthy control volunteers. Lipids were extracted and analyzed by liquid chromatography and mass spectrometry. Pulmonary function data were obtained by spirometry, and correlations of lung function with lipid species were determined. Wild-type C57BL/6 mice were exposed to 6 months of second-hand smoke in a full-body chamber. Surfactant lipids were decreased by 60% in subjects with COPD. All phospholipid classes were dramatically decreased, including ether phospholipids, which have not been studied in pulmonary surfactant. Availability of phospholipid, cholesterol, and sphingomyelin in BAL strongly correlated with pulmonary function and this was attributable to specific lipid species of phosphatidylcholine with surface tension reducing properties, and of phosphatidylglycerol with antimicrobial roles, as well as to other less studied lipid species. Mice exposed to smoke for six months recapitulated surfactant lipidomic changes observed in human subjects with COPD. In summary, we show that the surfactant lipidome is substantially altered in subjects with COPD, and decreased availability of phospholipids correlated with decreased pulmonary function. Further investigation of surfactant alterations in COPD would improve our understanding of its physiopathology and reveal new potential therapeutic targets
Decreased surfactant lipids correlate with lung function in chronic obstructive pulmonary disease (COPD).
Smoke exposure is known to decrease total pulmonary surfactant and alter its composition, but the role of surfactant in chronic obstructive pulmonary disease (COPD) remains unknown. We aimed to analyze the compositional changes in the surfactant lipidome in COPD and identify specific lipids associated with pulmonary function decline. Bronchoalveolar lavage (BAL) fluid was obtained from 12 former smokers with COPD and 5 non-smoking, non-asthmatic healthy control volunteers. Lipids were extracted and analyzed by liquid chromatography and mass spectrometry. Pulmonary function data were obtained by spirometry, and correlations of lung function with lipid species were determined. Wild-type C57BL/6 mice were exposed to 6 months of second-hand smoke in a full-body chamber. Surfactant lipids were decreased by 60% in subjects with COPD. All phospholipid classes were dramatically decreased, including ether phospholipids, which have not been studied in pulmonary surfactant. Availability of phospholipid, cholesterol, and sphingomyelin in BAL strongly correlated with pulmonary function and this was attributable to specific lipid species of phosphatidylcholine with surface tension reducing properties, and of phosphatidylglycerol with antimicrobial roles, as well as to other less studied lipid species. Mice exposed to smoke for six months recapitulated surfactant lipidomic changes observed in human subjects with COPD. In summary, we show that the surfactant lipidome is substantially altered in subjects with COPD, and decreased availability of phospholipids correlated with decreased pulmonary function. Further investigation of surfactant alterations in COPD would improve our understanding of its physiopathology and reveal new potential therapeutic targets
Chronic electronic cigarette exposure in mice induces features of COPD in a nicotine-dependent manner
BackgroundThe use of electronic (e)-cigarettes is increasing rapidly, but their lung health effects are not established. Clinical studies examining the potential long-term impact of e-cigarette use on lung health will take decades. To address this gap in knowledge, this study investigated the effects of exposure to aerosolised nicotine-free and nicotine-containing e-cigarette fluid on mouse lungs and normal human airway epithelial cells.MethodsMice were exposed to aerosolised phosphate-buffered saline, nicotine-free or nicotine-containing e-cigarette solution, 1-hour daily for 4 months. Normal human bronchial epithelial (NHBE) cells cultured at an air-liquid interface were exposed to e-cigarette vapours or nicotine solutions using a Vitrocell smoke exposure robot.ResultsInhalation of nicotine-containing e-cigarettes increased airway hyper-reactivity, distal airspace enlargement, mucin production, cytokine and protease expression. Exposure to nicotine-free e-cigarettes did not affect these lung parameters. NHBE cells exposed to nicotine-containing e-cigarette vapour showed impaired ciliary beat frequency, airway surface liquid volume, cystic fibrosis transmembrane regulator and ATP-stimulated K+ ion conductance and decreased expression of FOXJ1 and KCNMA1. Exposure of NHBE cells to nicotine for 5 days increased interleukin (IL)-6 and IL-8 secretion.ConclusionsExposure to inhaled nicotine-containing e-cigarette fluids triggered effects normally associated with the development of COPD including cytokine expression, airway hyper-reactivity and lung tissue destruction. These effects were nicotine-dependent both in the mouse lung and in human airway cells, suggesting that inhaled nicotine contributes to airway and lung disease in addition to its addictive properties. Thus, these findings highlight the potential dangers of nicotine inhalation during e-cigarette use
Mechanisms Linking COPD to Type 1 and 2 Diabetes Mellitus: Is There a Relationship between Diabetes and COPD?
Chronic obstructive pulmonary disease (COPD) patients frequently suffer from multiple comorbidities, resulting in poor outcomes for these patients. Diabetes is observed at a higher frequency in COPD patients than in the general population. Both type 1 and 2 diabetes mellitus are associated with pulmonary complications, and similar therapeutic strategies are proposed to treat these conditions. Epidemiological studies and disease models have increased our knowledge of these clinical associations. Several recent genome-wide association studies have identified positive genetic correlations between lung function and obesity, possibly due to alterations in genes linked to cell proliferation; embryo, skeletal, and tissue development; and regulation of gene expression. These studies suggest that genetic predisposition, in addition to weight gain, can influence lung function. Cigarette smoke exposure can also influence the differential methylation of CpG sites in genes linked to diabetes and COPD, and smoke-related single nucleotide polymorphisms are associated with resting heart rate and coronary artery disease. Despite the vast literature on clinical disease association, little direct mechanistic evidence is currently available demonstrating that either disease influences the progression of the other, but common pharmacological approaches could slow the progression of these diseases. Here, we review the clinical and scientific literature to discuss whether mechanisms beyond preexisting conditions, lifestyle, and weight gain contribute to the development of COPD associated with diabetes. Specifically, we outline environmental and genetic confounders linked with these diseases