49 research outputs found

    Green Tea-Derived Catechins Have Beneficial Effects on Cognition in the Pond Snail

    Get PDF
    Green tea has been used as a medicine in East Asia for thousands of years. Plant-derived compounds called flavanols, which are included in green tea, may have potentials to help maintain healthy brain function. In this chapter, we review the effects of flavanols, e.g. epicatechin (EpiC), on cognitive ability in the pond snail, Lymnaea stagnalis. In this decade, the Lukowiak’s group has tested the effects of EpiC on cognition ability in Lymnaea. In a Lymnaea model system, they showed that EpiC and EpiC-containing foods have a rapid and activity-dependent effect enhancing the formation of long-term memory (LTM) following operant conditioning of aerial respiratory behavior. In the last part of this chapter, we also introduce our study for the effects of EpiC on LTM formation in another model system in Lymnaea. This study showed that EpiC increases the persistence of LTM formed by classical conditioning of feeding behavior, and suggested that EpiC alters some electrophysiological properties of a neuron in the feeding system

    Measurement of methane flux over an evergreen coniferous forest canopy using a relaxed eddy accumulation system with tuneable diode laser spectroscopy detection

    Get PDF
    Very few studies have conducted long-term observations of methane (CH4) flux over forest canopies. In this study, we continuously measured CH4 fluxes over an evergreen coniferous (Japanese cypress) forest canopy throughout 1 year, using a micrometeorological relaxed eddy accumulation (REA) system with tuneable diode laser spectroscopy (TDLS) detection. The Japanese cypress forest, which is a common forest type in warm-temperate Asian monsoon regions with a wet summer, switched seasonally between a sink and source of CH4 probably because of competition by methanogens and methanotrophs, which are both influenced by soil conditions (e.g., soil temperature and soil moisture). At hourly to daily timescales, the CH4 fluxes were sensitive to rainfall, probably because CH4 emission increased and/or absorption decreased during and after rainfall. The observed canopy-scale fluxes showed complex behaviours beyond those expected from previous plot-scale measurements and the CH4 fluxes changed from sink to source and vice versa

    One year of continuous measurements of soil CH4 and CO2 fluxes in a Japanese cypress forest: Temporal and spatial variations associated with Asian monsoon rainfall

    Get PDF
    We examined the effects of Asian monsoon rainfall on CH[4] absorption of water-unsaturated forest soil. We conducted a 1 year continuous measurement of soil CH[4] and CO[2] fluxes with automated chamber systems in three plots with different soil characteristics and water content to investigate how temporal variations in CH[4] fluxes vary with the soil environment. CH[4] absorption was reduced by the “Baiu” summer rainfall event and peaked during the subsequent hot, dry period. Although CH[4] absorption and CO[2] emission typically increased as soil temperature increased, the temperature dependence of CH[4] varied more than that of CO[2], possibly due to the changing balance of activities between methanotrophs and methanogens occurring over a wide temperature range, which was strongly affected by soil water content. In short time intervals (30 min), the responses of CH[4] and CO[2] fluxes to rainfall were different for each plot. In a dry soil plot with a thick humus layer, both fluxes decreased abruptly at the peak of rainfall intensity. After rainfall, CO[2] emission increased quickly, while CH[4] absorption increased gradually. Release of accumulated CO[2] underground and restriction and recovery of CH[4] and CO[2] exchange between soil and air determined flux responses to rainfall. In a wet soil plot and a dry soil plot with a thinner humus layer, abrupt decreases in CH[4]fluxes were not observed. Consequently, the Asian monsoon rainfall strongly influenced temporal variations in CH[4] fluxes, and the differences in flux responses to environmental factors among plots caused large variability in annual budgets of CH[4] fluxes

    Insights into the mechanism of diurnal variations in methane emission from the stem surfaces of Alnus japonica

    Get PDF
    木の中にガスパイプライン? --ガス漏れの場所を特定せよ!--. 京都大学プレスリリース. 2022-07-15.Recent studies have suggested that in certain environments, tree stems emit methane (CH₄). This study explored the mechanism of CH₄ emission from the stem surfaces of Alnus japonica in a riparian wetland. Stem CH₄ emission rates and sap flux were monitored year-round, and fine-root anatomy was investigated. CH₄ emission rates were estimated using a closed-chamber method. Sap flux was measured using Granier-type thermal dissipation probes. Root anatomy was studied using both optical and cryo-scanning electron microscopy. CH₄ emissions during the leafy season exhibited a diurnally changing component superimposed upon an underlying continuum in which the diurnal variation was in phase with sap flux. We propose a model in which stem CH₄ emission involves at least two processes: a sap flux-dependent component responsible for the diurnal changes, and a sap flux-independent component responsible for the background continuum. The contribution ratios of the two processes are season-dependent. The background continuum possibly resulted from the diffusive transport of gaseous CH₄ from the roots to the upper trunk. Root anatomy analysis indicated that the intercellular space of the cortex and empty xylem cells in fine roots could serve as a passageway for transport of gaseous CH₄

    Exploring the capability of mayenite (12CaO·7Al₂O₃) as hydrogen storage material

    Get PDF
    We utilized nanoporous mayenite (12CaO·7Al₂O₃), a cost-effective material, in the hydride state (H⁻) to explore the possibility of its use for hydrogen storage and transportation. Hydrogen desorption occurs by a simple reaction of mayenite with water, and the nanocage structure transforms into a calcium aluminate hydrate. This reaction enables easy desorption of H⁻ ions trapped in the structure, which could allow the use of this material in future portable applications. Additionally, this material is 100% recyclable because the cage structure can be recovered by heat treatment after hydrogen desorption. The presence of hydrogen molecules as H⁻ ions was confirmed by ¹H-NMR, gas chromatography, and neutron diffraction analyses. We confirmed the hydrogen state stability inside the mayenite cage by the first-principles calculations to understand the adsorption mechanism and storage capacity and to provide a key for the use of mayenite as a portable hydrogen storage material. Further, we succeeded in introducing H⁻ directly from OH⁻ by a simple process compared with previous studies that used long treatment durations and required careful control of humidity and oxygen gas to form O₂ species before the introduction of H⁻

    Isolation of TCR genes with tumor-killing activity from tumor-infiltrating and circulating lymphocytes in a tumor rejection cynomolgus macaque model

    Get PDF
    To develop effective adoptive cell transfer therapy using T cell receptor (TCR)-engineered T cells, it is critical to isolate tumor-reactive TCRs that have potent anti-tumor activity. In humans, tumor-infiltrating lymphocytes (TILs) have been reported to contain CD8+PD-1+ T cells that express tumor-reactive TCRs. Characterization of tumor reactivity of TILs from non-human primate tumors could improve anti-tumor activity of TCR-engineered T cells in preclinical research. In this study, we sought to isolate TCR genes from CD8+PD-1+ T cells among TILs in a cynomolgus macaque model of tumor transplantation in which the tumors were infiltrated with CD8+ T cells and were eventually rejected. We analyzed the repertoire of TCRα and β pairs obtained from single CD8+PD-1+ T cells in TILs and circulating lymphocytes and identified multiple TCR pairs with high frequency, suggesting that T cells expressing these recurrent TCRs were clonally expanded in response to tumor cells. We further showed that the recurrent TCRs exhibited cytotoxic activity to tumor cells in vitro and potent anti-tumor activity in mice transplanted with tumor cells. These results imply that this tumor transplantation macaque model recapitulates key features of human TILs and can serve as a platform toward preclinical studies of non-human primate tumor models

    Current status of space gravitational wave antenna DECIGO and B-DECIGO

    Get PDF
    Deci-hertz Interferometer Gravitational Wave Observatory (DECIGO) is the future Japanese space mission with a frequency band of 0.1 Hz to 10 Hz. DECIGO aims at the detection of primordial gravitational waves, which could be produced during the inflationary period right after the birth of the universe. There are many other scientific objectives of DECIGO, including the direct measurement of the acceleration of the expansion of the universe, and reliable and accurate predictions of the timing and locations of neutron star/black hole binary coalescences. DECIGO consists of four clusters of observatories placed in the heliocentric orbit. Each cluster consists of three spacecraft, which form three Fabry-Perot Michelson interferometers with an arm length of 1,000 km. Three clusters of DECIGO will be placed far from each other, and the fourth cluster will be placed in the same position as one of the three clusters to obtain the correlation signals for the detection of the primordial gravitational waves. We plan to launch B-DECIGO, which is a scientific pathfinder of DECIGO, before DECIGO in the 2030s to demonstrate the technologies required for DECIGO, as well as to obtain fruitful scientific results to further expand the multi-messenger astronomy.Comment: 10 pages, 3 figure

    Current status of space gravitational wave antenna DECIGO and B-DECIGO

    Get PDF
    The Deci-hertz Interferometer Gravitational Wave Observatory (DECIGO) is a future Japanese space mission with a frequency band of 0.1 Hz to 10 Hz. DECIGO aims at the detection of primordial gravitational waves, which could have been produced during the inflationary period right after the birth of the Universe. There are many other scientific objectives of DECIGO, including the direct measurement of the acceleration of the expansion of the Universe, and reliable and accurate predictions of the timing and locations of neutron star/black hole binary coalescences. DECIGO consists of four clusters of observatories placed in heliocentric orbit. Each cluster consists of three spacecraft, which form three Fabry–Pérot Michelson interferometers with an arm length of 1000 km. Three DECIGO clusters will be placed far from each other, and the fourth will be placed in the same position as one of the other three to obtain correlation signals for the detection of primordial gravitational waves. We plan to launch B-DECIGO, which is a scientific pathfinder for DECIGO, before DECIGO in the 2030s to demonstrate the technologies required for DECIGO, as well as to obtain fruitful scientific results to further expand multi-messenger astronomy

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects
    corecore